Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
2.
Graefes Arch Clin Exp Ophthalmol ; 262(3): 759-768, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37874367

RESUMEN

PURPOSE: To determine whether non-invasive measurements of the nailfold capillaries (NCs) are associated with the presence and severity of diabetic retinopathy (DR) in patients with type 2 diabetes. METHODS: Eighty-three eyes of 83 patients with type 2 diabetes were enrolled. Sixty-three age-matched non-diabetic subjects served as controls. Diabetic patients were classified by the severity of their DR: non-DR (NDR), non-proliferative DR (NPDR), and proliferative DR (PDR). We used nailfold capillaroscopy to measure NC parameters, including number, length, width, and turbidity. RESULTS: Four NC parameters in the diabetic patients were significantly lower than in the controls (all P < 0.001). There was a statistically significant decrease in the NC parameters along with the increasing severity of DR (number: P = 0.02; all others: P < 0.001). Logistic regression analysis revealed that combining the systemic characteristics of age, sex, systolic blood pressure, estimated glomerular filtration rate, hemoglobin A1c level, and history of hypertension and dyslipidemia could indicate the presence of DR and PDR (the area under the receiver operating characteristic curve [AUC] = 0.81, P = 0.006; AUC = 0.87, P = 0.001, respectively). Furthermore, the discriminative power of DR was significantly improved (P = 0.03) by adding NC length to the systemic findings (AUC = 0.89, P < 0.001). CONCLUSION: NC measurement is a simple and non-invasive way to assess the risk of DR and its severity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Hipertensión , Humanos , Retinopatía Diabética/diagnóstico , Angioscopía Microscópica , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , Ojo
3.
Nat Biomed Eng ; 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945752

RESUMEN

The enhancement of insulin secretion and of the proliferation of pancreatic ß cells are promising therapeutic options for diabetes. Signals from the vagal nerve regulate both processes, yet the effectiveness of stimulating the nerve is unclear, owing to a lack of techniques for doing it so selectively and prolongedly. Here we report two optogenetic methods for vagal-nerve stimulation that led to enhanced glucose-stimulated insulin secretion and to ß cell proliferation in mice expressing choline acetyltransferase-channelrhodopsin 2. One method involves subdiaphragmatic implantation of an optical fibre for the photostimulation of cholinergic neurons expressing a blue-light-sensitive opsin. The other method, which suppressed streptozotocin-induced hyperglycaemia in the mice, involves the selective activation of vagal fibres by placing blue-light-emitting lanthanide microparticles in the pancreatic ducts of opsin-expressing mice, followed by near-infrared illumination. The two methods show that signals from the vagal nerve, especially from nerve fibres innervating the pancreas, are sufficient to regulate insulin secretion and ß cell proliferation.

4.
Dev Cell ; 58(19): 1819-1829.e5, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37716356

RESUMEN

Elucidating the mechanism(s) modulating appropriate tissue size is a critical biological issue. Pancreatic ß cells increase during pregnancy via cellular proliferation, but how ß cells promptly decrease to the original amount after parturition remains unclear. Herein, we demonstrate the role and mechanism of macrophage accumulation in this process. In the final stage of pregnancy, HTR1D signaling upregulates murine ß cell CXCL10, thereby promoting macrophage accumulation in pancreatic islets via the CXCL10-CXCR3 axis. Blocking this mechanism by administering an HTR1D antagonist or the CXCR3 antibody and depleting islet macrophages inhibited postpartum ß cell mass reduction. ß cells engulfed by macrophages increased in postpartum islets, but Annexin V administration suppressed this engulfment and the postpartum ß cell mass reduction, indicating the accumulated macrophages to phagocytose ß cells. This mechanism contributes to both maintenance of appropriate ß cell mass and glucose homeostasis promptly adapting to reduced systemic insulin demand after parturition.


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Embarazo , Femenino , Ratones , Animales , Células Secretoras de Insulina/fisiología , Parto , Insulina , Macrófagos , Fagocitosis
5.
Nat Commun ; 14(1): 3253, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316473

RESUMEN

Cell proliferation processes play pivotal roles in timely adaptation to many biological situations. Herein, we establish a highly sensitive and simple strategy by which time-series showing the proliferation of a targeted cell type can be quantitatively monitored in vivo in the same individuals. We generate mice expressing a secreted type of luciferase only in cells producing Cre under the control of the Ki67 promoter. Crossing these with tissue-specific Cre-expressing mice allows us to monitor the proliferation time course of pancreatic ß-cells, which are few in number and weakly proliferative, by measuring plasma luciferase activity. Physiological time courses, during obesity development, pregnancy and juvenile growth, as well as diurnal variation, of ß-cell proliferation, are clearly detected. Moreover, this strategy can be utilized for highly sensitive ex vivo screening for proliferative factors for targeted cells. Thus, these technologies may contribute to advancements in broad areas of biological and medical research.


Asunto(s)
Investigación Biomédica , Eritrocitos Anormales , Femenino , Embarazo , Animales , Ratones , Aclimatación , Transporte Biológico , Proliferación Celular
6.
J Diabetes Investig ; 14(8): 1005-1008, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37322823

RESUMEN

A 25-year-old man was diagnosed with diabetic ketoacidosis (DKA) at the onset of fulminant type 1 diabetes. After acute-phase DKA treatment including placement of a central venous catheter, a massive deep vein thrombosis (DVT) and pulmonary embolism (PE) were detected on hospital day 15. His protein C (PC) activity and antigen levels were low even 33 days after completing the DKA treatment, indicating partial type I PC deficiency. Severe PC dysfunction, due to overlapping of partial PC deficiency and hyperglycemia-induced PC suppression, concomitant with dehydration and catheter treatment, may have induced the massive DVT with PE. This case suggests that anti-coagulation therapy should be combined with acute-phase DKA treatment in patients with PC deficiency, even those who have been asymptomatic. As patients with partial PC deficiency should perhaps be included among those with severe DVT complications of DKA, venous thrombosis should always be considered as a potential complication of DKA.


Asunto(s)
Diabetes Mellitus Tipo 1 , Cetoacidosis Diabética , Deficiencia de Proteína C , Embolia Pulmonar , Trombosis de la Vena , Masculino , Humanos , Adulto , Diabetes Mellitus Tipo 1/complicaciones , Deficiencia de Proteína C/complicaciones , Trombosis de la Vena/complicaciones , Embolia Pulmonar/complicaciones , Cetoacidosis Diabética/complicaciones , Cetoacidosis Diabética/terapia , Factores de Riesgo
7.
Cell Rep ; 42(5): 112415, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37116488

RESUMEN

Crosstalk among organs/tissues is important for regulating systemic metabolism. Here, we demonstrate inter-organ crosstalk between hepatic insulin and hypothalamic leptin actions, which maintains survival during food shortages. In inducible liver insulin receptor knockout mice, body weight is increased with hyperphagia and decreased energy expenditure, accompanied by increased circulating leptin receptor (LepR) and decreased hypothalamic leptin actions. Additional hepatic LepR deficiency reverses these metabolic phenotypes. Thus, decreased hepatic insulin action suppresses hypothalamic leptin action with increased liver-derived soluble LepR. Human hepatic and circulating LepR levels also correlate negatively with hepatic insulin action indices. In mice, food restriction decreases hepatic insulin action and energy expenditure with increased circulating LepR. Hepatic LepR deficiency increases mortality with enhanced energy expenditure during food restriction. The liver translates metabolic cues regarding energy-deficient status, which is reflected by decreased hepatic insulin action, into soluble LepR, thereby suppressing energy dissipation and assuring survival during food shortages.


Asunto(s)
Insulina , Leptina , Animales , Ratones , Humanos , Leptina/metabolismo , Insulina/metabolismo , Hígado/metabolismo , Peso Corporal , Hipotálamo/metabolismo , Ratones Noqueados , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Metabolismo Energético/genética
8.
Sci Rep ; 12(1): 20130, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36418379

RESUMEN

Insulin like growth factor-1 (IGF-1) plays important roles in metabolic functions, especially in adulthood. Additionally, obese subjects are reportedly predisposed to having low absolute IGF-1 levels. However, the prevalence and clinical characteristics of obese subjects with low IGF-1 levels are unknown. We examined 64 obese subjects with a body mass index (BMI) ≥ 35 kg/m2, with no history of endocrinological disorders, receiving inpatient care. IGF-1 levels were interpreted based on the IGF-1 standard deviation score (SDS) clinically used and standardized by age and sex (low IGF-1 group; ≤ - 2.0 SDS and standard IGF-1 group; - 2.0 < and < + 2.0 SDS). Notably, 26.6% of the subjects had low IGF-1. Body fat mass and percentage, but not BMI, were significantly higher in the low than in the standard IGF-1 group. Furthermore, natural log-transformed high-sensitivity C-reactive protein, and the frequencies of dyslipidemia and hyperuricemia were higher in the low IGF-1 group. Moreover, among the subjects without diabetes, fasting glucose levels were significantly higher in the low IGF-1 group. Stepwise variable selection procedure revealed body fat percentage to be a parameter most strongly associated with low IGF-1. Thus, low IGF-1 levels may be an important marker of adiposity-associated metabolic disorders in obese patients.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina , Enfermedades Metabólicas , Humanos , Adulto , Estudios Retrospectivos , Japón/epidemiología , Enfermedades Metabólicas/complicaciones , Enfermedades Metabólicas/epidemiología , Comorbilidad , Obesidad/complicaciones , Obesidad/epidemiología
9.
J Diabetes Investig ; 13(10): 1666-1676, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35633298

RESUMEN

AIMS/INTRODUCTION: Whether basal ß-cell proliferation during adulthood is involved in maintaining sufficient ß-cell mass, and if so, the molecular mechanism(s) underlying basal ß-cell proliferation remain unclear. FoxM1 is a critical transcription factor which is known to play roles in 'adaptive' ß-cell proliferation, which facilitates rapid increases in ß-cell mass in response to increased insulin demands. Therefore, herein we focused on the roles of ß-cell FoxM1 in 'basal' ß-cell proliferation under normal conditions and in the maintenance of sufficient ß-cell mass as well as glucose homeostasis during adulthood. MATERIALS AND METHODS: FoxM1 deficiency was induced specifically in ß-cells of 8-week-old mice, followed by analyzing its short- (2 weeks) and long- (10 months) term effects on ß-cell proliferation, ß-cell mass, and glucose tolerance. RESULTS: FoxM1 deficiency suppressed ß-cell proliferation at both ages, indicating critical roles of FoxM1 in basal ß-cell proliferation throughout adulthood. While short-term FoxM1 deficiency affected neither ß-cell mass nor glucose tolerance, long-term FoxM1 deficiency suppressed ß-cell mass increases with impaired insulin secretion, thereby worsening glucose tolerance. In contrast, the insulin secretory function was not impaired in islets isolated from mice subjected to long-term ß-cell FoxM1 deficiency. Therefore, ß-cell mass reduction is the primary cause of impaired insulin secretion and deterioration of glucose tolerance due to long-term ß-cell FoxM1 deficiency. CONCLUSIONS: Basal low-level proliferation of ß-cells during adulthood is important for maintaining sufficient ß-cell mass and good glucose tolerance and ß-cell FoxM1 underlies this mechanism. Preserving ß-cell FoxM1 activity may prevent the impairment of glucose tolerance with advancing age.


Asunto(s)
Proteína Forkhead Box M1 , Células Secretoras de Insulina , Animales , Proliferación Celular , Glucosa , Insulina , Células Secretoras de Insulina/fisiología , Ratones
10.
Emerg Infect Dis ; 28(7): 1518-1520, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35468049

RESUMEN

Recently, along with increasing use of immune checkpoint inhibitors such as nivolumab, the incidence of immune-related adverse events, including type 1 diabetes mellitus, has become a serious problem. We report a patient who had immune checkpoint inhibitor‒associated type 1 diabetes mellitus that developed after a second mRNA-based SARS-CoV-2 vaccination.


Asunto(s)
Vacunas contra la COVID-19/efectos adversos , COVID-19/prevención & control , Diabetes Mellitus Tipo 1/inducido químicamente , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Nivolumab/efectos adversos , SARS-CoV-2/inmunología , Humanos , Japón , Vacunación/efectos adversos
11.
J Diabetes Investig ; 13(8): 1458-1460, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35396830

RESUMEN

Various immune-related adverse events (irAEs), including fulminant type 1 diabetes (FT1D), are known to be associated with immune checkpoint inhibitors (ICIs). We experienced two lung adenocarcinoma cases who developed fulminant type 1 diabetes long after discontinuation of ICI therapies. One, a 74-year-old male, received nivolumab and developed fulminant type 1 diabetes 44 days after the last infusion. The other, an 85-year-old male, received atezolizumab and developed fulminant type 1 diabetes 171 days after the last infusion. Clinical ICI treatment guidelines recommend laboratory tests during ICI treatments but the necessity of tests in patients whose ICI therapy has been discontinued is not clearly described. These cases indicate that blood glucose monitoring should be continued at least for several months, and that patients should be informed of the possibility of fulminant type 1 diabetes after ICI discontinuation, because fulminant type 1 diabetes progresses rapidly and can be life-threatening if not promptly recognized.


Asunto(s)
Anticuerpos Monoclonales Humanizados/efectos adversos , Diabetes Mellitus Tipo 1 , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares/tratamiento farmacológico , Nivolumab/efectos adversos , Anciano , Anciano de 80 o más Años , Glucemia , Automonitorización de la Glucosa Sanguínea , Diabetes Mellitus Tipo 1/inducido químicamente , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Neoplasias Pulmonares/complicaciones , Masculino
12.
Clin Obes ; 10(6): e12409, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32892484

RESUMEN

Bariatric surgery is associated with a high remission rate of type 2 diabetes mellitus. However, it is unclear whether patients showing remission of diabetes actually have normal blood glucose levels throughout the day. We therefore performed continuous glucose monitoring (CGM) in 15 ambulatory patients showing remission of diabetes after laparoscopic sleeve gastrectomy (LSG) without or with duodenojejunal bypass (DJB) at the time of diabetic remission (12.9 ± 1.8 months after bariatric surgery). The definition of remission of diabetes was based on the American Diabetes Association criteria. The mean, SD, and coefficient of variation (CV) of glucose calculated from CGM were 6.2 ± 0.6 mmol/L, 1.5 ± 0.4 mmol/L, and 23.7 ± 6.2%, respectively. These values were higher than those of healthy participants without diabetes previously reported. The percentages of time spent above 10.0 mmol/L and below 3.9 mmol/L were 2.6 (IQR 0-5.0)% and 0 (IQR 0-8.0)%, respectively. Thus, patients with remission of diabetes after LSG or LSG/DJB still had substantial periods of hyperglycemia and hypoglycemia throughout the day. Therefore, we must manage patients with diabetes carefully, even after apparent remission of type 2 diabetes in response to bariatric surgery.


Asunto(s)
Glucemia/análisis , Diabetes Mellitus Tipo 2/sangre , Gastrectomía/métodos , Derivación Gástrica/métodos , Obesidad Mórbida/sangre , Adulto , Automonitorización de la Glucosa Sanguínea , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/cirugía , Duodeno/cirugía , Femenino , Humanos , Yeyuno/cirugía , Masculino , Persona de Mediana Edad , Obesidad Mórbida/complicaciones , Obesidad Mórbida/cirugía , Periodo Posoperatorio , Inducción de Remisión , Resultado del Tratamiento
13.
Front Pharmacol ; 11: 943, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32670063

RESUMEN

Leptin resistance is an important mechanism underlying the development and maintenance of obesity and is thus regarded as a promising target of obesity treatment. Plasminogen activator inhibitor 1 (PAI-1), a physiological inhibitor of tissue-type and urokinase-type plasminogen activators, is produced at high levels in adipose tissue, especially in states of obesity, and is considered to primarily be involved in thrombosis. PAI-1 may also have roles in inter-organ tissue communications regulating body weight, because PAI-1 knockout mice reportedly exhibit resistance to high fat diet (HFD)-induced obesity. However, the role of PAI-1 in body weight regulation and the underlying mechanisms have not been fully elucidated. We herein studied how PAI-1 affects systemic energy metabolism. We examined body weight and food intake of PAI-1 knockout mice fed normal chow or HFD. We also examined the effects of pharmacological inhibition of PAI-1 activity by a small molecular weight compound, TM5441, on body weight, leptin sensitivities, and expressions of thermogenesis-related genes in brown adipose tissue (BAT) of HFD-fed wild type (WT) mice. Neither body weight gain nor food intake was reduced in PAI-1 KO mice under chow fed conditions. On the other hand, under HFD feeding conditions, food intake was decreased in PAI-1 KO as compared with WT mice (HFD-WT mice 3.98 ± 0.08 g/day vs HFD-KO mice 3.73 ± 0.07 g/day, P = 0.021), leading to an eventual significant suppression of weight gain (HFD-WT mice 40.3 ± 1.68 g vs HFD-KO mice 34.6 ± 1.84 g, P = 0.039). Additionally, TM5441 treatment of WT mice pre-fed the HFD resulted in a marked suppression of body weight gain in a PAI-1-dependent manner (HFD-WT-Control mice 37.6 ± 1.07 g vs HFD-WT-TM5441 mice 33.8 ± 0.97 g, P = 0.017). TM5441 treatment alleviated HFD-induced systemic and hypothalamic leptin resistance, before suppression of weight gain was evident. Moreover, improved leptin sensitivity in response to TM5441 treatment was accompanied by increased expressions of thermogenesis-related genes such as uncoupling protein 1 in BAT (HFD-WT-Control mice 1.00 ± 0.07 vs HFD-WT-TM5441 mice 1.32 ± 0.05, P = 0.002). These results suggest that PAI-1 plays a causative role in body weight gain under HFD-fed conditions by inducing hypothalamic leptin resistance. Furthermore, they indicate that pharmacological inhibition of PAI-1 activity is a potential strategy for alleviating diet-induced leptin resistance in obese subjects.

14.
Diabetes Res Clin Pract ; 165: 108240, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32502691

RESUMEN

AIMS: Evaluation of the retinal microcirculation is key to understanding retinal vasculopathies, such as diabetic retinopathy. Laser speckle flowgraphy (LSFG) has recently enabled us to directly evaluate the vascular resistance in both retinal vessels and capillaries, non-invasively. We therefore assessed whether retinal vessel blood flow and/or the capillary microcirculation are associated with blood flow in the cervical arteries in diabetic patients without severe retinopathy. METHODS: We enrolled 110 type 2 diabetes patients, with no or mild non-proliferative diabetic retinopathy, in this prospective cross-sectional study. We measured the resistivity indices (RIs) of the retinal vessel and capillaries by LSFG and those of cervical arteries by Doppler ultrasonography, followed by analyzing associations. RESULTS: The RIs of not only the carotid but also vertebral arteries were associated with those of retinal vessel blood flow and the retinal capillary microcirculation. Multiple regression analyses revealed these associations to be independent of other explanatory variables including age and diabetes duration. CONCLUSIONS: We obtained novel and direct evidence demonstrating a close association between the retinal microcirculation and cervical artery hemodynamics in diabetic patients. These findings suggest shared mechanisms to underlie micro- and macro-angiopathies. Thus, high vascular resistance of cervical arteries may be a risk of developing retinopathy.


Asunto(s)
Arterias Carótidas/fisiopatología , Diabetes Mellitus Tipo 2/complicaciones , Flujometría por Láser-Doppler/métodos , Microcirculación/fisiología , Enfermedades de la Retina/etiología , Vasos Retinianos/fisiopatología , Arteria Vertebral/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos
15.
Nat Commun ; 9(1): 5300, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30546054

RESUMEN

The liver possesses a high regenerative capacity. Liver regeneration is a compensatory response overcoming disturbances of whole-body homeostasis provoked by organ defects. Here we show that a vagus-macrophage-hepatocyte link regulates acute liver regeneration after liver injury and that this system is critical for promoting survival. Hepatic Foxm1 is rapidly upregulated after partial hepatectomy (PHx). Hepatic branch vagotomy (HV) suppresses this upregulation and hepatocyte proliferation, thereby increasing mortality. In addition, hepatic FoxM1 supplementation in vagotomized mice reverses the suppression of liver regeneration and blocks the increase in post-PHx mortality. Hepatic macrophage depletion suppresses both post-PHx Foxm1 upregulation and remnant liver regeneration, and increases mortality. Hepatic Il-6 rises rapidly after PHx and this is suppressed by HV, muscarinic blockade or resident macrophage depletion. Furthermore, IL-6 neutralization suppresses post-PHx Foxm1 upregulation and remnant liver regeneration. Collectively, vagal signal-mediated IL-6 production in hepatic macrophages upregulates hepatocyte FoxM1, leading to liver regeneration and assures survival.


Asunto(s)
Proteína Forkhead Box M1/metabolismo , Hepatocitos/metabolismo , Interleucina-6/metabolismo , Regeneración Hepática/fisiología , Macrófagos/metabolismo , Nervio Vago/metabolismo , Animales , Proliferación Celular , Activación Enzimática , Hepatectomía , Hígado/citología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Antagonistas Muscarínicos/farmacología , Transducción de Señal/fisiología , Nervio Vago/cirugía
16.
Int J Obes (Lond) ; 42(9): 1544-1555, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29717275

RESUMEN

BACKGROUND/OBJECTIVE: Insulin signals, via the regulation of key enzyme expression, both suppress gluconeogenesis and enhance lipid synthesis in the liver. Animal studies have revealed insulin signaling favoring gluconeogenesis suppression to be selectively impaired in steatotic livers. However, whether, and if so how, such selective insulin resistance occurs in human steatotic livers remains unknown. Our aim was to investigate selective insulin resistance in human livers with non-alcoholic fatty liver disease (NAFLD). SUBJECTS/METHODS: We examined mRNA expressions of key molecules for insulin signaling, gluconeogenesis and lipogenesis in human liver biopsy samples obtained from 51 non-diabetic subjects: 9 healthy controls and 42 NAFLD patients, and analyzed associations of these molecules with each other and with detailed pathological and clinical biochemistry data. RESULTS: In NAFLD patients, insulin receptor substrate (IRS)-2 expression was decreased, while those of key enzymes for gluconeogenesis were increased. These alterations of IRS-2 and gluconeogenesis enzymes were induced both in simple steatosis (SS) and non-alcoholic steatohepatitis (NASH), while these expression levels did not differ between SS and NASH. Furthermore, alterations in the expressions of IRS-2 and gluconeogenesis enzymes showed strong negative correlations and were concurrently induced in the early histological stage of NAFLD. In contrast, fatty acid synthase (FAS) expression was not decreased in NAFLD, despite IRS-2 downregulation, but correlated strongly with IRS-1 expression. Furthermore, no histological scores were associated with these molecules. Thus, IRS-1 signaling, which is not impaired in NAFLD, appears to modulate FAS expression. CONCLUSION: These analyses revealed that selective insulin resistance is present in human NAFLD livers and occurs in its early phases. The effect of insulin, during the IRS step, on gene expressions for lipogenesis and gluconeogenesis are apparently distinct and preferential downregulation of IRS-2 may contribute to selective resistance to the suppressive effects of insulin on gluconeogenesis.


Asunto(s)
Proteínas Sustrato del Receptor de Insulina/metabolismo , Resistencia a la Insulina/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Adulto , Biopsia , Estudios de Casos y Controles , Femenino , Humanos , Proteínas Sustrato del Receptor de Insulina/análisis , Proteínas Sustrato del Receptor de Insulina/genética , Hígado/metabolismo , Hígado/patología , Hígado/fisiopatología , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/fisiopatología
17.
Diabetes Res Clin Pract ; 139: 43-51, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29453992

RESUMEN

AIMS: Detection of early-stage atherosclerosis in type 2 diabetes mellitus (T2DM) patients is important for preventing cardiovascular disease. A phased tracking method for evaluating arterial wall elasticity sensitively detects early-stage atherosclerosis. However, biochemical markers for early-stage atherosclerosis have yet to be established. METHODS: This cross-sectional study enrolled 180 T2DM patients, who were classified as not having atherosclerosis according to the carotid intima-media thickness (IMT) criteria. We measured serum cystatin C, the estimated glomerular filtration rate (eGFR) and urinary albumin-to-creatinine ratio (ACR), and analyzed the associations between these markers and arterial wall elasticity (Eθ), IMT and the cardio-ankle velocity index. RESULTS: Multiple linear regression analyses revealed that cystatin C was significantly associated with Eθ, while neither eGFR nor ACR showed an association. Furthermore, among the examined atherosclerotic markers, Eθ was most reliably associated with cystatin C. Additionally, the association between cystatin C and Eθ disappeared in the low elasticity subgroup, which included subjects in whom no atherosclerotic changes had yet been initiated. CONCLUSIONS: In T2DM patients without apparent arterial wall thickening, cystatin C is strongly and independently associated with arterial wall elasticity, which reflects the degree of subclinical atherosclerosis. Thus, cystatin C is a potentially useful marker of early-stage atherosclerosis.


Asunto(s)
Aterosclerosis/diagnóstico , Biomarcadores/sangre , Cistatina C/sangre , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/fisiopatología , Angiopatías Diabéticas/diagnóstico , Rigidez Vascular , Adulto , Anciano , Arterias/fisiopatología , Aterosclerosis/sangre , Aterosclerosis/etiología , Grosor Intima-Media Carotídeo , Estudios Transversales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , Angiopatías Diabéticas/sangre , Angiopatías Diabéticas/fisiopatología , Diagnóstico Precoz , Elasticidad , Femenino , Tasa de Filtración Glomerular , Humanos , Masculino , Persona de Mediana Edad , Pronóstico
18.
Sci Rep ; 8(1): 1499, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29367680

RESUMEN

Olfactory receptors (ORs) mediate olfactory chemo-sensation in OR neurons. Herein, we have demonstrated that the OR chemo-sensing machinery functions in pancreatic ß-cells and modulates insulin secretion. First, we found several OR isoforms, including OLFR15 and OLFR821, to be expressed in pancreatic islets and a ß-cell line, MIN6. Immunostaining revealed OLFR15 and OLFR821 to be uniformly expressed in pancreatic ß-cells. In addition, mRNAs of Olfr15 and Olfr821 were detected in single MIN6 cells. These results indicate that multiple ORs are simultaneously expressed in individual ß-cells. Octanoic acid, which is a medium-chain fatty acid contained in food and reportedly interacts with OLFR15, potentiated glucose-stimulated insulin secretion (GSIS), thereby improving glucose tolerance in vivo. GSIS potentiation by octanoic acid was confirmed in isolated pancreatic islets and MIN6 cells and was blocked by OLFR15 knockdown. While Gα olf expression was not detectable in ß-cells, experiments using inhibitors and siRNA revealed that the pathway dependent on phospholipase C-inositol triphosphate, rather than cAMP-protein kinase A, mediates GSIS potentiation via OLFR15. These findings suggest that the OR system in pancreatic ß-cells has a chemo-sensor function allowing recognition of environmental substances obtained from food, and potentiates insulin secretion in a cell-autonomous manner, thereby modulating systemic glucose metabolism.


Asunto(s)
Glucosa/metabolismo , Células Secretoras de Insulina/química , Células Secretoras de Insulina/efectos de los fármacos , Insulina/metabolismo , Receptores Odorantes/análisis , Animales , Línea Celular , Perfilación de la Expresión Génica , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/análisis , Receptores Odorantes/genética
19.
Nat Commun ; 8(1): 1930, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29208957

RESUMEN

Under insulin-resistant conditions such as obesity, pancreatic ß-cells proliferate to prevent blood glucose elevations. A liver-brain-pancreas neuronal relay plays an important role in this process. Here, we show the molecular mechanism underlying this compensatory ß-cell proliferation. We identify FoxM1 activation in islets from neuronal relay-stimulated mice. Blockade of this relay, including vagotomy, inhibits obesity-induced activation of the ß-cell FoxM1 pathway and suppresses ß-cell expansion. Inducible ß-cell-specific FoxM1 deficiency also blocks compensatory ß-cell proliferation. In isolated islets, carbachol and PACAP/VIP synergistically promote ß-cell proliferation through a FoxM1-dependent mechanism. These findings indicate that vagal nerves that release several neurotransmitters may allow simultaneous activation of multiple pathways in ß-cells selectively, thereby efficiently promoting ß-cell proliferation and maintaining glucose homeostasis during obesity development. This neuronal signal-mediated mechanism holds potential for developing novel approaches to regenerating pancreatic ß-cells.


Asunto(s)
Glucemia/metabolismo , Proliferación Celular , Proteína Forkhead Box M1/metabolismo , Resistencia a la Insulina , Células Secretoras de Insulina/citología , Neuronas/metabolismo , Obesidad/metabolismo , Animales , Encéfalo/metabolismo , Carbacol/farmacología , Agonistas Colinérgicos/farmacología , Fármacos Gastrointestinales/farmacología , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Hígado/metabolismo , Ratones , Neurotransmisores/farmacología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Transducción de Señal , Vagotomía , Nervio Vago , Péptido Intestinal Vasoactivo/farmacología
20.
Gastroenterology ; 152(6): 1521-1535.e8, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28088462

RESUMEN

BACKGROUND & AIMS: Hypoxia-inducible factor 1α subunit (HIF1A) is a transcription factor that controls the cellular response to hypoxia and is activated in hepatocytes of patients with nonalcoholic fatty liver disease (NAFLD). NAFLD increases the risk for cholesterol gallstone disease by unclear mechanisms. We studied the relationship between HIF1A and gallstone formation associated with liver steatosis. METHODS: We performed studies with mice with inducible disruption of Hif1a in hepatocytes via a Cre adenoviral vector (inducible hepatocyte-selective HIF1A knockout [iH-HIFKO] mice), and mice without disruption of Hif1a (control mice). Mice were fed a diet rich in cholesterol and cholate for 1 or 2 weeks; gallbladders were collected and the number of gallstones was determined. Livers and biliary tissues were analyzed by histology, quantitative reverse-transcription polymerase chain reaction, immunohistochemistry, and immunoblots. We measured concentrations of bile acid, cholesterol, and phospholipid in bile and rates of bile flow. Primary hepatocytes and cholangiocytes were isolated and analyzed. HIF1A was knocked down in Hepa1-6 cells with small interfering RNAs. Liver biopsy samples from patients with NAFLD, with or without gallstones, were analyzed by quantitative reverse-transcription polymerase chain reaction. RESULTS: Control mice fed a diet rich in cholesterol and cholate developed liver steatosis with hypoxia; levels of HIF1A protein were increased in hepatocytes around central veins and 90% of mice developed cholesterol gallstones. Only 20% of the iH-HIFKO mice developed cholesterol gallstones. In iH-HIFKO mice, the biliary lipid concentration was reduced by 36%, compared with control mice, and bile flow was increased by 35%. We observed increased water secretion from hepatocytes into bile canaliculi to mediate these effects, resulting in suppression of cholelithogenesis. Hepatic expression of aquaporin 8 (AQP8) protein was 1.5-fold higher in iH-HIFKO mice than in control mice. Under hypoxic conditions, cultured hepatocytes increased expression of Hif1a, Hmox1, and Vegfa messenger RNAs (mRNAs), and down-regulated expression of AQP8 mRNA and protein; AQP8 down-regulation was not observed in cells with knockdown of HIF1A. iH-HIFKO mice had reduced inflammation and mucin deposition in the gallbladder compared with control mice. Liver tissues from patients with NAFLD with gallstones had increased levels of HIF1A, HMOX1, and VEGFA mRNAs, compared with livers from patients with NAFLD without gallstones. CONCLUSIONS: In steatotic livers of mice, hypoxia up-regulates expression of HIF1A, which reduces expression of AQP8 and concentrates biliary lipids via suppression of water secretion from hepatocytes. This promotes cholesterol gallstone formation. Livers from patients with NAFLD and gallstones express higher levels of HIF1A than livers from patients with NAFLD without gallstones.


Asunto(s)
Colesterol/metabolismo , Cálculos Biliares/genética , Cálculos Biliares/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Acuaporinas/genética , Acuaporinas/metabolismo , Bilis/metabolismo , Ácidos y Sales Biliares/metabolismo , Colatos/administración & dosificación , Colesterol en la Dieta/administración & dosificación , Colesterol en la Dieta/metabolismo , Regulación hacia Abajo/genética , Femenino , Vesícula Biliar/patología , Cálculos Biliares/patología , Hemo-Oxigenasa 1/genética , Hepatocitos/metabolismo , Humanos , Hipoxia/metabolismo , Inflamación/etiología , Hígado/metabolismo , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Mucinas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/complicaciones , ARN Mensajero/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/genética , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...