Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Circulation ; 147(14): 1097-1109, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36802911

RESUMEN

BACKGROUND: Hypertension imposes substantial health and economic burden worldwide. Primary aldosteronism (PA) is one of the most common causes of secondary hypertension, causing cardiovascular events at higher risk compared with essential hypertension. However, the germline genetic contribution to the susceptibility of PA has not been well elucidated. METHOD: We conducted a genome-wide association analysis of PA in the Japanese population and a cross-ancestry meta-analysis combined with UK Biobank and FinnGen cohorts (816 PA cases and 425 239 controls) to identify genetic variants that contribute to PA susceptibility. We also performed a comparative analysis for the risk of 42 previously established blood pressure-associated variants between PA and hypertension with the adjustment of blood pressure. RESULTS: In the Japanese genome-wide association study, we identified 10 loci that presented suggestive evidence for the association with the PA risk (P<1.0×10-6). In the meta-analysis, we identified 5 genome-wide significant loci (1p13, 7p15, 11p15, 12q24, and 13q12; P<5.0×10-8), including 3 of the suggested loci in the Japanese genome-wide association study. The strongest association was observed at rs3790604 (1p13), an intronic variant of WNT2B (odds ratio, 1.50 [95% CI, 1.33-1.69]; P=5.2×10-11). We further identified 1 nearly genome-wide significant locus (8q24, CYP11B2), which presented a significant association in the gene-based test (P=7.2×10-7). Of interest, all of these loci were known to be associated with blood pressure in previous studies, presumably because of the prevalence of PA among individuals with hypertension. This assumption was supported by the observation that they had a significantly higher risk effect on PA than on hypertension. We also revealed that 66.7% of the previously established blood pressure-associated variants had a higher risk effect for PA than for hypertension. CONCLUSIONS: This study demonstrates the genome-wide evidence for a genetic predisposition to PA susceptibility in the cross-ancestry cohorts and its significant contribution to the genetic background of hypertension. The strongest association with the WNT2B variants reinforces the implication of the Wnt/ß-catenin pathway in the PA pathogenesis.


Asunto(s)
Hiperaldosteronismo , Hipertensión , Humanos , Estudio de Asociación del Genoma Completo , Hipertensión/epidemiología , Hipertensión/genética , Presión Sanguínea/genética , Factores de Riesgo , Predisposición Genética a la Enfermedad , Hiperaldosteronismo/diagnóstico , Hiperaldosteronismo/epidemiología , Hiperaldosteronismo/genética , Polimorfismo de Nucleótido Simple , Sitios Genéticos
2.
Endocr Relat Cancer ; 29(8): 495-502, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35675123

RESUMEN

DNA methylation and demethylation regulate the transcription of genes. DNA methylation-associated gene expression of adrenal steroidogenic enzymes may regulate cortisol production in cortisol-producing adenoma (CPA). We aimed to determine the DNA methylation levels of all genes encoding steroidogenic enzymes involved in CPA. Additionally, the aims were to clarify the DNA methylation-associated gene expression and evaluate the difference of CPA genotype from others using DNA methylation data. Twenty-five adrenal CPA and six nonfunctioning adrenocortical adenoma (NFA) samples were analyzed. RNA sequencing and DNA methylation array were performed. The methylation levels at 118 methylation sites of the genes were investigated, and their methylation and mRNA levels were subsequently integrated. Among all the steroidogenic enzyme genes studied, CYP17A1 gene was mainly found to be hypomethylated in CPA compared to that in NFA, and the Benjamini-Hochberg procedure demonstrated that methylation levels at two sites in the CYP17A1 gene body were statistically significant. PRKACA mutant CPAs predominantly exhibited hypomethylation of CYP17A1 gene compared with the GNAS mutant CPAs. Inverse associations between CYP17A1 methylation in three regions of the gene body and its mRNA levels were observed in the NFAs and CPAs. In applying clustering analysis using CYP17A1 methylation and mRNA levels, CPAs with PRKACA mutation were differentiated from NFAs and CPAs with a GNAS mutation. We demonstrated that CPAs exhibited hypomethylation of the CYP17A1 gene body in CPA, especially in the PRKACA mutant CPAs. Methylation of CYP17A1 gene may influence its transcription levels.


Asunto(s)
Adenoma , Neoplasias de la Corteza Suprarrenal , Adenoma Corticosuprarrenal , Adenoma/genética , Adenoma/metabolismo , Neoplasias de la Corteza Suprarrenal/genética , Adenoma Corticosuprarrenal/genética , Adenoma Corticosuprarrenal/metabolismo , Metilación de ADN , Humanos , Hidrocortisona/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
Mol Cell Endocrinol ; 548: 111613, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35257799

RESUMEN

DNA methylation alteration is tissue-specific and play a pivotal role in regulating gene transcription during cell proliferation and survival. We aimed to detect genes regulated by DNA methylation, and then investigated whether the gene influenced cell proliferation or survival in adrenal cells. DNA methylation and qPCR analyses were performed in nonfunctioning adrenocortical adenoma (NFA, n = 12) and aldosterone-producing adenoma (APA, n = 35) samples. The VDR gene promoter was markedly hypomethylated in APA with ATP1A1 mutation, and the promoter methylation levels showed a significant inverse association with the transcripts in APA. ATP1A1 mutation led to VDR transcription in HAC15 cells, and VDR suppression abrogated ATP1A1 mutation-mediated cell proliferation in HAC15 cells. We demonstrated that APA with ATP1A1 mutation showed entire hypomethylation in the VDR promoter and abundant VDR mRNA and protein expression. VDR suppression abrogated ATP1A1 mutation-mediated cell proliferation in HAC15 cells. Abundant VDR expression would be essential for ATP1A1 mutation-mediated cell proliferation.


Asunto(s)
Adenoma , Adenoma Corticosuprarrenal , Hiperaldosteronismo , Receptores de Calcitriol , ATPasa Intercambiadora de Sodio-Potasio , Adenoma/genética , Adenoma Corticosuprarrenal/genética , Adenoma Corticosuprarrenal/metabolismo , Aldosterona/metabolismo , Metilación de ADN/genética , Humanos , Hiperaldosteronismo/genética , Mutación/genética , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
4.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34681640

RESUMEN

The molecular mechanisms by which ATP1A1 mutation-mediated cell proliferation or tumorigenesis in aldosterone-producing adenomas (APAs) have not been elucidated. First, we investigated whether the APA-associated ATP1A1 L104R mutation stimulated cell proliferation. Second, we aimed to clarify the molecular mechanisms by which the ATP1A1 mutation-mediated cell proliferated. We performed transcriptome analysis in APAs with ATP1A1 mutation. ATP1A1 L104R mutation were modulated in human adrenocortical carcinoma (HAC15) cells (ATP1A1-mutant cells), and we evaluated cell proliferation and molecular signaling events. Transcriptome and immunohistochemical analysis showed that Na/K-ATPase (NKA) expressions in ATP1A1 mutated APA were more abundant than those in non-functioning adrenocortical adenoma or KCNJ5 mutated APAs. The significant increase of number of cells, amount of DNA and S-phase population were shown in ATP1A1-mutant cells. Fluo-4 in ATP1A1-mutant cells were significantly increased. Low concentration of ouabain stimulated cell proliferation in ATP1A1-mutant cells. ATP1A1-mutant cells induced Src phosphorylation, and low concentration of ouabain supplementation showed further Src phosphorylation. We demonstrated that NKAs were highly expressed in ATP1A1 mutant APA, and the mutant stimulated cell proliferation and Src phosphorylation in ATP1A1-mutant cells. NKA stimulations would be a risk factor for the progression and development to an ATP1A1 mutant APA.


Asunto(s)
Adenoma/patología , Aldosterona/metabolismo , Proliferación Celular , ATPasa Intercambiadora de Sodio-Potasio/genética , Adenoma/metabolismo , Adenoma Corticosuprarrenal/metabolismo , Adenoma Corticosuprarrenal/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citocromo P-450 CYP11B2/genética , Citocromo P-450 CYP11B2/metabolismo , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Humanos , Mutación , Ouabaína/farmacología , Fosforilación/efectos de los fármacos , Puntos de Control de la Fase S del Ciclo Celular , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Transcriptoma , Familia-src Quinasas/metabolismo
5.
Mol Cell Endocrinol ; 538: 111456, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34520814

RESUMEN

The intracellular molecular mechanisms underlying the genotype of cortisol-producing adenoma (CPA) have not been fully determined. We analyzed gene expressions in CPA and the human adrenocortical cell line (HAC15 cells) with PRKACA mutation. Clustering analysis using a gene set associated with responses to cAMP revealed the possible differences between PRKACA mutant CPAs and GNAS and CTNNB1 mutant CPAs. The levels of STAR, CYP11A1, CYP17A1, CYP21A2, and FDX1 transcripts and cortisol levels per unit area in PRKACA mutant CPAs were significantly higher than those in GNAS mutant CPAs. PRKACA mutations led to an increase in steroidogenic enzyme expression and cortisol production in HAC15 cells. Transcriptome analysis revealed differences between PRKACA mutant CPAs and GNAS and CTNNB1 mutant CPAs. Cortisol production in PRKACA mutant CPAs is increased by the cAMP-PKA signaling pathway-mediated upregulation of steroidogenic enzymes transcription. The intracellular molecular mechanisms underlying these processes would be notably important in PRKACA mutant CPAs.


Asunto(s)
Adenoma/genética , Cromograninas/genética , Síndrome de Cushing/genética , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Mutación , beta Catenina/genética , Adenoma/metabolismo , Adulto , Anciano , Línea Celular Tumoral , Análisis por Conglomerados , Síndrome de Cushing/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Hidrocortisona/metabolismo , Masculino , Persona de Mediana Edad , RNA-Seq
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...