Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 42(5): 1160-7, 1998 May.
Artículo en Inglés | MEDLINE | ID: mdl-9593144

RESUMEN

The rise in the frequency of fungal infections and the increased resistance noted to the widely employed azole antifungals make the development of new antifungals imperative for human health. The sterol biosynthetic pathway has been exploited for the development of several antifungal agents (allylamines, morpholines, azoles), but additional potential sites for antifungal agent development are yet to be fully investigated. The sterol methyltransferase gene (ERG6) catalyzes a biosynthetic step not found in humans and has been shown to result in several compromised phenotypes, most notably markedly increased permeability, when disrupted in Saccharomyces cerevisiae. The Candida albicans ERG6 gene was isolated by complementation of a S. cerevisiae erg6 mutant by using a C. albicans genomic library. Sequencing of the Candida ERG6 gene revealed high homology with the Saccharomyces version of ERG6. The first copy of the Candida ERG6 gene was disrupted by transforming with the URA3 blaster system, and the second copy was disrupted by both URA3 blaster transformation and mitotic recombination. The resulting erg6 strains were shown to be hypersusceptible to a number of sterol synthesis and metabolic inhibitors, including terbinafine, tridemorph, fenpropiomorph, fluphenazine, cycloheximide, cerulenin, and brefeldin A. No increase in susceptibility to azoles was noted. Inhibitors of the ERG6 gene product would make the cell increasingly susceptible to antifungal agents as well as to new agents which normally would be excluded and would allow for clinical treatment at lower dosages. In addition, the availability of ERG6 would allow for its use as a screen for new antifungals targeted specifically to the sterol methyltransferase.


Asunto(s)
Candida albicans/genética , Proteínas Fúngicas/genética , Genes Fúngicos/genética , Metiltransferasas/genética , Secuencia de Aminoácidos , Antifúngicos/farmacología , Secuencia de Bases , Candida albicans/efectos de los fármacos , Candida albicans/enzimología , Genes Fúngicos/efectos de los fármacos , Heterocigoto , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Mutación/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido
2.
Proc Natl Acad Sci U S A ; 94(21): 11173-8, 1997 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-9326581

RESUMEN

Genetic disruption of the Saccharomyces cerevisiae C-4 sterol methyl oxidase ERG25 gene leads to sterol auxotrophy. We have characterized a suppression system that requires two mutations to restore viability to this disrupted strain. One suppressor mutation is erg11, which is blocked in 14alpha-demethylation of lanosterol and is itself an auxotroph. The second suppressor mutation required is either slu1 or slu2 (suppressor of lanosterol utilization). These mutations are leaky versions of HEM2 and HEM4, respectively; addition of exogenous hemin reverses the suppressing effects of slu1 and slu2. Suppression of erg25 by erg11 slu1 (or erg11 slu2) results in a slow-growing strain in which lanosterol, the first sterol in the pathway, accumulates. This result indicates that endogenously synthesized lanosterol can substitute for ergosterol and support growth. In the triple mutants, all but 1 (ERG6) of the 13 subsequent reactions of the ergosterol pathway are inactive. Azole antibiotics (clotrimazole, ketoconazole, and itraconazole) widely used to combat fungal infections are known to do so by inhibiting the ERG11 gene product, the 14alpha-demethylase. In this investigation, we demonstrate that treatment of the sterol auxotrophs erg25 slu1 or erg25 slu2 with azole antibiotics paradoxically restores viability to these strains in the absence of sterol supplementation via the suppression system we have described.


Asunto(s)
Antifúngicos/farmacología , Azoles/farmacología , Genes Fúngicos , Hemo/metabolismo , Oxigenasas de Función Mixta/genética , Saccharomyces cerevisiae/fisiología , Esteroles/metabolismo , Supresión Genética , Clotrimazol/farmacología , Genotipo , Itraconazol/farmacología , Cetoconazol/farmacología , Lanosterol/metabolismo , Mutación , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética
3.
Gene ; 169(1): 105-9, 1996 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-8635732

RESUMEN

The ERG5 gene from Saccharomyces cerevisiae was cloned by complementation of an erg5-1 mutation using a negative selection protocol involving screening for nystatin-sensitive transformants. ERG5 is the putative gene encoding the C-22 sterol desaturase required in ergosterol biosynthesis. The functional gene was localized to a 2.15-kb SacI-EcoRI DNA fragment containing an open reading frame of 538 amino acids (aa). ERG5 contains a 10-aa motif consistent with its role as a cytochrome P-450 (CyP450) enzyme and is similar to a number of mammalian CyP450 enzymes. Gene disruption demonstrates that ERG5 is not essential for cell viability.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Ergosterol/biosíntesis , Genes Fúngicos , Oxidorreductasas/genética , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Secuencia de Bases , Mapeo Cromosómico , Clonación Molecular , Expresión Génica , Datos de Secuencia Molecular , Mapeo Restrictivo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Homología de Secuencia de Aminoácido
4.
Proc Natl Acad Sci U S A ; 93(1): 186-90, 1996 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-8552601

RESUMEN

We have cloned the Saccharomyces cerevisiae C-4 sterol methyl oxidase ERG25 gene. The sterol methyl oxidase performs the first of three enzymic steps required to remove the two C-4 methyl groups leading to cholesterol (animal), ergosterol (fungal), and stigmasterol (plant) biosynthesis. An ergosterol auxotroph, erg25, which fails to demethylate and concomitantly accumulates 4,4-dimethylzy-mosterol, was isolated after mutagenesis. A complementing clone consisting of a 1.35-kb Dra I fragment encoded a 309-amino acid polypeptide (calculated molecular mass, 36.48 kDa). The amino acid sequence shows a C-terminal endoplasmic reticulum retrieval signal KKXX and three histidine-rich clusters found in eukaryotic membrane desaturases and in a bacterial alkane hydroxylase and xylene monooxygenase. The sterol profile of an ERG25 disruptant was consistent with the erg25 allele obtained by mutagenesis.


Asunto(s)
Genes Fúngicos , Oxigenasas de Función Mixta/genética , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Cromatografía de Gases y Espectrometría de Masas , Datos de Secuencia Molecular , Mutagénesis Insercional , Mapeo Restrictivo , Saccharomyces cerevisiae/genética
5.
Lipids ; 28(11): 963-7, 1993 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-8277826

RESUMEN

The identification of the precise structural features of yeast sterol molecules required for the essential "sparking" function has been a controversial area of research. Recent cloning and gene disruption studies in Saccharomyces cerevisiae have shown that C-24 methylation (ERG6), C-5 desaturation (ERG3) and delta 8-delta 7 isomerization (ERG2) are not required, while C-14 demethylation (ERG11) and C-14 reduction (ERG24) are each required for aerobic viability. Earlier observations had indicated that C-14 demethylase deficient strains could be restored to aerobic growth by suppressor mutations that caused a deficiency in C-5 desaturase. These strains were reported to synthesize some ergosterol, indicating that they contained leaky mutations in both ERG11 and ERG3, thereby making it impossible to determine whether the removal of the C-14 methyl group was required for aerobic viability. The availability of the ERG11 and ERG3 genes has been used in this study to construct strains that contain null mutants in both ERG11 and ERG3. Results show that these double disruption strains are viable and that spontaneously arising suppressors of the ERG11 disruption are erg3 mutants. The erg11 mutants of S. cerevisiae are compared to similar mutants of Candida albicans that are viable in the absence of the erg3 lesion.


Asunto(s)
Candida albicans/genética , Sistema Enzimático del Citocromo P-450/genética , Oxidorreductasas/genética , Saccharomyces cerevisiae/genética , Esteroles/biosíntesis , Aerobiosis , Candida albicans/crecimiento & desarrollo , División Celular , Cicloheximida/farmacología , Genes Fúngicos/genética , Genes Supresores , Mutación , Saccharomyces cerevisiae/crecimiento & desarrollo , Esterol 14-Desmetilasa , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...