Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mov Disord ; 38(9): 1706-1715, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37382573

RESUMEN

BACKGROUND: Biomaterials from oral and nasal swabs provide, in theory, a potential resource for biomarker development. However, their diagnostic value has not yet been investigated in the context of Parkinson's disease (PD) and associated conditions. OBJECTIVE: We have previously identified a PD-specific microRNA (miRNA) signature in gut biopsies. In this work, we aimed to investigate the expression of miRNAs in routine buccal (oral) and nasal swabs obtained from cases with idiopathic PD and isolated rapid eye movement sleep behavior disorder (iRBD), a prodromal symptom that often precedes α-synucleinopathies. We aimed to address their value as a diagnostic biomarker for PD and their mechanistic contribution to PD onset and progression. METHODS: Healthy control cases (n = 28), cases with PD (n = 29), and cases with iRBD (n = 8) were prospectively recruited to undergo routine buccal and nasal swabs. Total RNA was extracted from the swab material, and the expression of a predefined set of miRNAs was quantified by quantitative real-time polymerase chain reaction. RESULTS: Statistical analysis revealed a significantly increased expression of hsa-miR-1260a in cases who had PD. Interestingly, hsa-miR-1260a expression levels correlated with diseases severity, as well as olfactory function, in the PD and iRBD cohorts. Mechanistically, hsa-miR-1260a segregated to Golgi-associated cellular processes with a potential role in mucosal plasma cells. Predicted hsa-miR-1260a target gene expression was reduced in iRBD and PD groups. CONCLUSIONS: Our work demonstrates oral and nasal swabs as a valuable biomarker pool in PD and associated neurodegenerative conditions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
MicroARNs , Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Sinucleinopatías , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/complicaciones , Trastorno de la Conducta del Sueño REM/diagnóstico , Biomarcadores
2.
Mol Neurodegener ; 18(1): 32, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173733

RESUMEN

BACKGROUND: Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with a loss of dopaminergic (DA) neurons. Despite symptomatic therapies, there is currently no disease-modifying treatment to halt neuronal loss in PD. A major hurdle for developing and testing such curative therapies results from the fact that most DA neurons are already lost at the time of the clinical diagnosis, rendering them inaccessible to therapy. Understanding the early pathological changes that precede Lewy body pathology (LBP) and cell loss in PD will likely support the identification of novel diagnostic and therapeutic strategies and help to differentiate LBP-dependent and -independent alterations. Several previous studies identified such specific molecular and cellular changes that occur prior to the appearance of Lewy bodies (LBs) in DA neurons, but a concise map of such early disease events is currently missing. METHODS: Here, we conducted a literature review to identify and discuss the results of previous studies that investigated cases with incidental Lewy body disease (iLBD), a presumed pathological precursor of PD. RESULTS: Collectively, our review demonstrates numerous cellular and molecular neuropathological changes occurring prior to the appearance of LBs in DA neurons. CONCLUSIONS: Our review provides the reader with a summary of early pathological events in PD that may support the identification of novel therapeutic and diagnostic targets and aid to the development of disease-modifying strategies in PD.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/patología , Cuerpos de Lewy/patología , Enfermedad por Cuerpos de Lewy/patología , Degeneración Nerviosa/patología , Neuropatología , alfa-Sinucleína
3.
Mol Neurobiol ; 59(7): 3980-3995, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35460053

RESUMEN

Spreading of alpha-synuclein (αSyn) may play an important role in Parkinson's disease and related synucleinopathies. Passive immunization with anti-αSyn antibodies is a promising method to slow down the spreading process and thereby the progression of synucleinopathies. Currently, it remains elusive which specific characteristics are essential to render therapeutic antibodies efficacious. Here, we established a neuronal co-culture model, in which αSyn species are being released from αSyn-overexpressing cells and induce toxicity in a priori healthy GFP-expressing cells. In this model, we investigated the protective efficacy of three anti-αSyn antibodies. Only two of these antibodies, one C-terminal and one N-terminal, protected from αSyn-induced toxicity by inhibiting the uptake of spreading-competent αSyn from the cell culture medium. Neither the binding epitope nor the affinity of the antibodies towards recombinant αSyn could explain differences in biological efficacy. However, both protective antibodies formed more stable antibody-αSyn complexes than the non-protective antibody. These findings indicate that the stability of antibody-αSyn complexes may be more important to confer protection than the binding epitope or affinity to recombinant αSyn.


Asunto(s)
Anticuerpos , Enfermedad de Parkinson , Sinucleinopatías , alfa-Sinucleína , Anticuerpos/inmunología , Anticuerpos/farmacología , Epítopos/inmunología , Humanos , Neuronas , Enfermedad de Parkinson/inmunología , Enfermedad de Parkinson/terapia , Sinucleinopatías/inmunología , Sinucleinopatías/terapia , alfa-Sinucleína/inmunología
4.
J Neurosurg ; 136(3): 672-680, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34560646

RESUMEN

OBJECTIVE: Peaks in the beta band of local field potentials (LFPs) may serve as a biological feedback signal for closed-loop deep brain stimulation (DBS) in Parkinson's disease (PD). However, the specific frequency of such peaks and their response to DBS and to different types of movement remains uncertain. In the present study, the authors examined the abundance of discernible peaks in the beta band and the effect of different types of movement and DBS on these peaks. METHODS: Subthalamic nucleus LFPs were analyzed from 38 patients with PD in a frequency range between 10 and 35 Hz, as well as the impact of movement (gait, hand movements) and electrical stimulation on these peaks. The position of the electrode segments from which LFPs were recorded was computed. RESULTS: The authors found a bimodal distribution of peaks in the beta band with discernible high- (27 Hz) and low-frequency (15 Hz) peaks. Movement of either hand had no significant effect on these peaks, whereas walking significantly reduced high-frequency beta peaks but not the peaks in the low beta band. Stimulation caused an amplitude-dependent suppression of both peaks. CONCLUSIONS: DBS suppresses LFP beta peaks of different frequencies, whereas beta suppression caused by movement is dependent on the type of movement and frequency of the peak. These results will support the investigation of distinct LFP spectra for the application of closed-loop DBS.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Estimulación Encefálica Profunda/métodos , Mano , Humanos , Movimiento/fisiología , Enfermedad de Parkinson/terapia
5.
Cell Death Dis ; 12(10): 854, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34535638

RESUMEN

Dopaminergic (DA) cell death in Parkinson's disease (PD) is associated with the gradual appearance of neuronal protein aggregates termed Lewy bodies (LBs) that are comprised of vesicular membrane structures and dysmorphic organelles in conjunction with the protein alpha-Synuclein (α-Syn). Although the exact mechanism of neuronal aggregate formation and death remains elusive, recent research suggests α-Syn-mediated alterations in the lysosomal degradation of aggregated proteins and organelles - a process termed autophagy. Here, we used a combination of molecular biology and immunochemistry to investigate the effect of α-Syn on autophagy turnover in cultured human DA neurons and in human post-mortem brain tissue. We found α-Syn overexpression to reduce autophagy turnover by compromising the fusion of autophagosomes with lysosomes, thus leading to a decrease in the formation of autolysosomes. In accord with a compensatory increase in the plasma membrane fusion of autophagosomes, α-Syn enhanced the number of extracellular vesicles (EV) and the abundance of autophagy-associated proteins in these EVs. Mechanistically, α-Syn decreased the abundance of the v-SNARE protein SNAP29, a member of the SNARE complex mediating autophagolysosome fusion. In line, SNAP29 knockdown mimicked the effect of α-Syn on autophagy whereas SNAP29 co-expression reversed the α-Syn-induced changes on autophagy turnover and EV release and ameliorated DA neuronal cell death. In accord with our results from cultured neurons, we found a stage-dependent reduction of SNAP29 in SNc DA neurons from human post-mortem brain tissue of Lewy body pathology (LBP) cases. In summary, our results thus demonstrate a previously unknown effect of α-Syn on intracellular autophagy-associated SNARE proteins and, as a consequence, a reduced autolysosome fusion. As such, our findings will therefore support the investigation of autophagy-associated pathological changes in PD.


Asunto(s)
Autofagosomas/metabolismo , Autofagia , Lisosomas/metabolismo , Fusión de Membrana , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , alfa-Sinucleína/metabolismo , Anciano , Fenómenos Biofísicos , Línea Celular , Neuronas Dopaminérgicas/metabolismo , Metabolismo Energético , Vesículas Extracelulares/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Cuerpos de Lewy/patología , Melaninas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Persona de Mediana Edad , Modelos Biológicos , Modelos Moleculares , Unión Proteica , Proteína Sequestosoma-1/metabolismo , Sustancia Negra/metabolismo , Sustancia Negra/patología
6.
Parkinsonism Relat Disord ; 88: 46-50, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34118643

RESUMEN

OBJECTIVE: In the present work, we aimed to investigate the expression of microRNAs (miRNAs) in routine colonic biopsies obtained from patients with idiopathic Parkinson's disease (PD) and to address their value as a diagnostic biomarker for PD and their mechanistic contribution to PD onset and progression. METHODS: Patients with PD (n = 13) and healthy controls (n = 17) were prospectively recruited to undergo routine colonic biopsies for cancer screening. Total RNA was extracted from the biopsy material and the expression of miRNAs was quantified by Illumina High-Throughput Sequencing. RESULTS: Statistical analysis revealed a significant submucosal enrichment of the miRNA hsa-miR-486-5p in colonic biopsies from PD patients compared to the control subjects. The expression of miR-486-5p correlated with age and disease severity as measured by the UPDRS and Hoehn & Yahr scale. miRNA gene target analysis identified 301 gene targets that are affected by miR-486-5p. A follow-up associated target identification and pathway enrichment analysis further determined their role in distinct biological processes in the enteric nervous system (ENS). INTERPRETATION: Our work demonstrates an enrichment of submucosal miR-486-5p in routine colonic biopsies from PD patients. Our results will support the examination of miR-486-5p as a PD biomarker and help to understand the significance of the miR-486-5p gene targets for PD onset and progression. In addition, our data will support the investigation of the molecular and cellular mechanisms of GI dysfunction in PD.


Asunto(s)
Colon/metabolismo , Sistema Nervioso Entérico/metabolismo , MicroARNs/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/fisiopatología , Factores de Edad , Anciano , Biomarcadores/metabolismo , Biopsia , Colon/patología , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad
7.
Acta Neurochir (Wien) ; 163(1): 205-209, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32710183

RESUMEN

Subthalamic local field potentials in the beta band are considered as potential biomarkers for closed-loop deep brain stimulation. To investigate the subthalamic beta band peak amplitudes in a Parkinson's disease patient over an extended period of time by using a novel and commercially available neurostimulator with permanent sensing capability. We recorded local field potentials of the subthalamic nucleus using the Medtronic Percept™ implantable neurostimulator at rest and during physical activity (gait) with and in response to deep brain stimulation. We found a double-peaked beta activity on both sides. Increasing stimulation and physical activity resulted in a decreased beta band amplitude, but was accompanied by the appearance of a second, and previously unrecognized peak at 13 Hz in the right hemisphere. Our results will support the investigation of distinct different peaks in the beta band and their relevance and usefulness as closed-loop biomarkers.


Asunto(s)
Ritmo beta , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/fisiopatología , Anciano , Estimulación Encefálica Profunda/instrumentación , Estimulación Encefálica Profunda/métodos , Marcha , Humanos , Neuroestimuladores Implantables , Masculino
8.
Front Neurol ; 11: 561323, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33192994

RESUMEN

Background: Deep brain stimulation (DBS) has become a standard treatment for advanced stages of Parkinson's disease, essential tremor, and dystonia. In addition to the correct surgical device implantation, effective programming is regarded to be the most important factor for clinical outcome. Despite established strategies for adjusting neurostimulation, DBS programming remains time- and resource-consuming. Although kinematic and neuronal biosignals have recently been examined as potential feedback for closed-loop DBS (CL-DBS), there is an ongoing need for programming strategies to adapt the stimulation parameters and electrode configurations accurately and effectively. Methods: Here, we tested the usefulness of a patient-rated visual analog scale (VAS) for real-time adjustment of DBS parameters. The stimulation parameters (contact and amplitude) in Parkinson's patients with STN-DBS (n = 17) were optimized based on the patient's subjective VAS rating. A Minkowski distance (Md) was calculated to compare the individual combination of contact selection and amplitude to the stimulation parameters that resulted from classical programming based on clinical signs and symptoms. Results: We found no statistically significant difference between VAS-based and classical programming in regard to the specific contact or amplitude used or in regard to the clinical disease severity (UPDRS). Conclusions: Our data suggest that VAS-based and classical programming strategies both lead to similar short-term results. Although further research will be required to assess the validity of VAS-based DBS programming, our results support the investigation of the patient's subjective rating as an additional and valid feedback signal for individualized DBS adjustment.

9.
Front Genet ; 11: 572058, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101391

RESUMEN

Ras-associated binding (Rab) proteins are small GTPases that regulate the trafficking of membrane components during endocytosis and exocytosis including the release of extracellular vesicles (EVs). Parkinson's disease (PD) is one of the most prevalent neurodegenerative disorder in the elderly population, where pathological proteins such as alpha-synuclein (α-Syn) are transmitted in EVs from one neuron to another neuron and ultimately across brain regions, thereby facilitating the spreading of pathology. We recently demonstrated fibroblast growth factor-2 (FGF2) to enhance the release of EVs and delineated the proteomic signature of FGF2-triggered EVs in cultured primary hippocampal neurons. Out of 235 significantly upregulated proteins, we found that FGF2 specifically enriched EVs for the two Rab family members Rab8b and Rab31. Consequently, we investigated the interactions of Rab8b and Rab31 using a network analysis approach in order to estimate the global influence of their enrichment in EVs. To achieve this, we have demarcated a protein-protein interaction network (PPiN) for these Rabs and identified the proteins associated with PD in various cellular components of the central nervous system (CNS), in different brain regions, and in the enteric nervous system (ENS). A total of 126 direct or indirect interactions were reported for two Rab candidates, out of which 114 are Rab8b interactions and 54 are Rab31 interactions, ultimately resulting in an individual interaction score (IS) of 90.48 and 42.86%, respectively. Conclusively, these results for the first time demonstrate the relevance of FGF2-induced Rab-enrichment in EVs and its potential to regulate PD pathophysiology.

10.
iScience ; 23(8): 101349, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32707433

RESUMEN

Hippocampal Lewy body pathology (LBP) is associated with changes in neurotrophic factor signaling and neuronal energy metabolism. LBP progression is attributed to the aggregation of α-synuclein (α-Syn) and its cell-to-cell transmission via extracellular vehicles (EVs). We recently discovered an enhanced EV release in basic fibroblast growth factor (bFGF)-treated hippocampal neurons. Here, we examined the EV and cell lysate proteome changes in bFGF-treated hippocampal neurons. We identified n = 2,310 differentially expressed proteins (DEPs) induced by bFGF. We applied weighted protein co-expression network analysis (WPCNA) to generate protein modules from DEPs and mapped them to published LBP datasets. This approach revealed n = 532 LBP-linked DEPs comprising key α-Syn-interacting proteins, LBP-associated RNA-binding proteins (RBPs), and neuronal ion channels and receptors that can impact LBP onset and progression. In summary, our deep proteomic analysis affirms the potential influence of bFGF signaling on LBP-related proteome changes and associated molecular interactions.

11.
EMBO J ; 39(15): e103457, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32567721

RESUMEN

Seizure protein 6 (SEZ6) is required for the development and maintenance of the nervous system, is a major substrate of the protease BACE1 and is linked to Alzheimer's disease (AD) and psychiatric disorders, but its molecular functions are not well understood. Here, we demonstrate that SEZ6 controls glycosylation and cell surface localization of kainate receptors composed of GluK2/3 subunits. Loss of SEZ6 reduced surface levels of GluK2/3 in primary neurons and reduced kainate-evoked currents in CA1 pyramidal neurons in acute hippocampal slices. Mechanistically, loss of SEZ6 in vitro and in vivo prevented modification of GluK2/3 with the human natural killer-1 (HNK-1) glycan, a modulator of GluK2/3 function. SEZ6 interacted with GluK2 through its ectodomain and promoted post-endoplasmic reticulum transport of GluK2 in the secretory pathway in heterologous cells and primary neurons. Taken together, SEZ6 acts as a new trafficking factor for GluK2/3. This novel function may help to better understand the role of SEZ6 in neurologic and psychiatric diseases.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células Piramidales/metabolismo , Receptores de Ácido Kaínico/metabolismo , Animales , Glicosilación , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Transporte de Proteínas , Receptores de Ácido Kaínico/genética , Receptor de Ácido Kaínico GluK2 , Receptor Kainato GluK3
12.
Adv Sci (Weinh) ; 7(6): 1902372, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32195080

RESUMEN

Extracellular vesicles (EVs) are endogenous membrane-derived vesicles that shuttle bioactive molecules between glia and neurons, thereby promoting neuronal survival and plasticity in the central nervous system (CNS) and contributing to neurodegenerative conditions. Although EVs hold great potential as CNS theranostic nanocarriers, the specific molecular factors that regulate neuronal EV uptake and release are currently unknown. A combination of patch-clamp electrophysiology and pH-sensitive dye imaging is used to examine stimulus-evoked EV release in individual neurons in real time. Whereas spontaneous electrical activity and the application of a high-frequency stimulus induce a slow and prolonged fusion of multivesicular bodies (MVBs) with the plasma membrane (PM) in a subset of cells, the neurotrophic factor basic fibroblast growth factor (bFGF) greatly increases the rate of stimulus-evoked MVB-PM fusion events and, consequently, the abundance of EVs in the culture medium. Proteomic analysis of neuronal EVs demonstrates bFGF increases the abundance of the v-SNARE vesicle-associated membrane protein 3 (VAMP3, cellubrevin) on EVs. Conversely, knocking-down VAMP3 in cultured neurons attenuates the effect of bFGF on EV release. The results determine the temporal characteristics of MVB-PM fusion in hippocampal neurons and reveal a new function for bFGF signaling in controlling neuronal EV release.

13.
FASEB J ; 34(2): 2465-2482, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31908000

RESUMEN

The protease beta-site APP cleaving enzyme 1 (BACE1) has fundamental functions in the nervous system. Its inhibition is a major therapeutic approach in Alzheimer's disease, because BACE1 cleaves the amyloid precursor protein (APP), thereby catalyzing the first step in the generation of the pathogenic amyloid beta (Aß) peptide. Yet, BACE1 cleaves numerous additional membrane proteins besides APP. Most of these substrates have been identified in vitro, but only few were further validated or characterized in vivo. To identify BACE1 substrates with in vivo relevance, we used isotope label-based quantitative proteomics of wild type and BACE1-deficient (BACE1 KO) mouse brains. This approach identified known BACE1 substrates, including Close homolog of L1 and contactin-2, which were found to be enriched in the membrane fraction of BACE1 KO brains. VWFA and cache domain-containing protein 1 (CACHD)1 and MAM domain-containing glycosylphosphatidylinositol anchor protein 1 (MDGA1), which have functions in synaptic transmission, were identified and validated as new BACE1 substrates in vivo by immunoblots using primary neurons and mouse brains. Inhibition or deletion of BACE1 from primary neurons resulted in a pronounced inhibition of substrate cleavage and a concomitant increase in full-length protein levels of CACHD1 and MDGA1. The BACE1 cleavage site in both proteins was determined to be located within the juxtamembrane domain. In summary, this study identifies and validates CACHD1 and MDGA1 as novel in vivo substrates for BACE1, suggesting that cleavage of both proteins may contribute to the numerous functions of BACE1 in the nervous system.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Encéfalo/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Proteómica , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Encéfalo/patología , Ratones , Ratones Noqueados , Moléculas de Adhesión de Célula Nerviosa/genética
14.
Acta Neuropathol ; 139(2): 319-345, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31768670

RESUMEN

Parkinson's disease (PD) is the most common neurodegenerative movement disorder and is characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) and the gradual appearance of α-synuclein (α-syn)-containing neuronal protein aggregates. Although the exact mechanism of α-syn-mediated cell death remains elusive, recent research suggests that α-syn-induced alterations in neuronal excitability contribute to cell death in PD. Because the fragile X mental retardation protein (FMRP) controls the expression and function of numerous neuronal genes related to neuronal excitability and synaptic function, we here investigated the role of FMRP in α-syn-associated pathological changes in cell culture and mouse models of PD as well as in post-mortem human brain tissue from PD patients. We found FMRP to be decreased in cultured DA neurons and in the mouse brain in response to α-syn overexpression. FMRP was, furthermore, lost in the SNc of PD patients and in patients with early stages of incidental Lewy body disease (iLBD). Unlike fragile X syndrome (FXS), FMR1 expression in response to α-syn was regulated by a mechanism involving Protein Kinase C (PKC) and cAMP response element-binding protein (CREB). Reminiscent of FXS neurons, α-syn-overexpressing cells exhibited an increase in membrane N-type calcium channels, increased phosphorylation of ERK1/2, eIF4E and S6, increased overall protein synthesis, and increased expression of Matrix Metalloproteinase 9 (MMP9). FMRP affected neuronal function in a PD animal model, because FMRP-KO mice were resistant to the effect of α-syn on striatal dopamine release. In summary, our results thus reveal a new role of FMRP in PD and support the examination of FMRP-regulated genes in PD disease progression.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Técnicas de Cultivo de Célula , Modelos Animales de Enfermedad , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Humanos , Masculino , Ratones , Persona de Mediana Edad , Enfermedad de Parkinson/metabolismo , Fenotipo
15.
Prog Neurobiol ; 180: 101644, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31238088

RESUMEN

Tau is a microtubule-associated protein with versatile functions in the dynamic assembly of the neuronal cytoskeleton. Four-repeat (4R-) tauopathies are a group of neurodegenerative diseases defined by cytoplasmic inclusions predominantly composed of tau protein isoforms with four microtubule-binding domains. Progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease or glial globular tauopathy belong to the group of 4R-tauopathies. The present review provides an introduction in the current concept of 4R-tauopathies, including an overview of the neuropathological and clinical spectrum of these diseases. It describes the genetic and environmental etiological factors, as well as the contemporary knowledge about the pathophysiological mechanisms, including post-translational modifications, aggregation and fragmentation of tau, as well as the role of protein degradation mechanisms. Furthermore, current theories about disease propagation are discussed, involving different extracellular tau species and their cellular release and uptake mechanisms. Finally, molecular diagnostic tools for 4R-tauopathies, including tau-PET and fluid biomarkers, and investigational therapeutic strategies are presented. In summary, we report on 4R-tauopathies as overarching disease concept based on a shared pathophysiological concept, and highlight the challenges and opportunities on the way towards a causal therapy.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Humanos , Neuropatología/métodos
16.
Front Neurol ; 10: 410, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31231293

RESUMEN

Deep brain stimulation (DBS) has become the treatment of choice for advanced stages of Parkinson's disease, medically intractable essential tremor, and complicated segmental and generalized dystonia. In addition to accurate electrode placement in the target area, effective programming of DBS devices is considered the most important factor for the individual outcome after DBS. Programming of the implanted pulse generator (IPG) is the only modifiable factor once DBS leads have been implanted and it becomes even more relevant in cases in which the electrodes are located at the border of the intended target structure and when side effects become challenging. At present, adjusting stimulation parameters depends to a large extent on personal experience. Based on a comprehensive literature search, we here summarize previous studies that examined the significance of distinct stimulation strategies for ameliorating disease signs and symptoms. We assess the effect of adjusting the stimulus amplitude (A), frequency (f), and pulse width (pw) on clinical symptoms and examine more recent techniques for modulating neuronal elements by electrical stimulation, such as interleaving (Medtronic®) or directional current steering (Boston Scientific®, Abbott®). We thus provide an evidence-based strategy for achieving the best clinical effect with different disorders and avoiding adverse effects in DBS of the subthalamic nucleus (STN), the ventro-intermedius nucleus (VIM), and the globus pallidus internus (GPi).

17.
Front Neurol ; 10: 314, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31001196

RESUMEN

Deep brain stimulation has developed into an established treatment for movement disorders and is being actively investigated for numerous other neurological as well as psychiatric disorders. An accurate electrode placement in the target area and the effective programming of DBS devices are considered the most important factors for the individual outcome. Recent research in humans highlights the relevance of widespread networks connected to specific DBS targets. Improving the targeting of anatomical and functional networks involved in the generation of pathological neural activity will improve the clinical DBS effect and limit side-effects. Here, we offer a comprehensive overview over the latest research on target structures and targeting strategies in DBS. In addition, we provide a detailed synopsis of novel technologies that will support DBS programming and parameter selection in the future, with a particular focus on closed-loop stimulation and associated biofeedback signals.

18.
Cell Death Dis ; 9(7): 757, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29988147

RESUMEN

Accumulation of pathological α-synuclein aggregates plays a major role in Parkinson's disease. Macroautophagy is a mechanism to degrade intracellular protein aggregates by wrapping them into autophagosomes, followed by fusion with lysosomes. We had previously shown that pharmacological activation of macroautophagy protects against α-synuclein-induced toxicity in human neurons. Here, we hypothesized that inhibition of macroautophagy would aggravate α-synuclein-induced cell death.Unexpectedly, inhibition of autophagosome formation by silencing of ATG5 protected from α-synuclein-induced toxicity. Therefore, we studied alternative cellular mechanisms to compensate for the loss of macroautophagy. ATG5 silencing did not affect the ubiquitin-proteasome system, chaperone systems, chaperone-mediated autophagy, or the unfolded protein response. However, ATG5 silencing increased the secretion of α-synuclein via exosomes. Blocking exosomal secretion exacerbated α-synuclein-induced cell death.We conclude that exosomal secretion of α-synuclein is increased after impaired formation of autophagosomes to reduce the intracellular α-synuclein burden. This compensatory mechanism prevents α-synuclein-induced neuronal cell death.


Asunto(s)
Autofagia/fisiología , Exosomas/metabolismo , alfa-Sinucleína/metabolismo , Autofagosomas/metabolismo , Western Blotting , Línea Celular , Humanos , ARN Interferente Pequeño/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
19.
Sci Rep ; 7(1): 11469, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28904388

RESUMEN

α-synuclein-induced neurotoxicity is a core pathogenic event in neurodegenerative synucleinopathies such as Parkinson's disease, dementia with Lewy bodies, or multiple system atrophy. There is currently no disease-modifying therapy available for these diseases. We screened 1,600 FDA-approved drugs for their efficacy to protect LUHMES cells from degeneration induced by wild-type α-synuclein and identified dipyridamole, a non-selective phosphodiesterase inhibitor, as top hit. Systematic analysis of other phosphodiesterase inhibitors identified a specific phosphodiesterase 1 inhibitor as most potent to rescue from α-synuclein toxicity. Protection was mediated by an increase of cGMP and associated with the reduction of a specific α-synuclein oligomeric species. RNA interference experiments confirmed PDE1A and to a smaller extent PDE1C as molecular targets accounting for the protective efficacy. PDE1 inhibition also rescued dopaminergic neurons from wild-type α-synuclein induced degeneration in the substantia nigra of mice. In conclusion, this work identifies inhibition of PDE1A in particular as promising target for neuroprotective treatment of synucleinopathies.


Asunto(s)
Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Fosfodiesterasa I/antagonistas & inhibidores , Agregación Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo , Animales , Línea Celular , Dipiridamol/farmacología , Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Agregación Patológica de Proteínas/tratamiento farmacológico , Alcaloides de la Vinca/farmacología , alfa-Sinucleína/antagonistas & inhibidores
20.
Nat Neurosci ; 17(1): 131-43, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24316888

RESUMEN

Microglia are myeloid cells of the CNS that participate both in normal CNS function and in disease. We investigated the molecular signature of microglia and identified 239 genes and 8 microRNAs that were uniquely or highly expressed in microglia versus myeloid and other immune cells. Of the 239 genes, 106 were enriched in microglia as compared with astrocytes, oligodendrocytes and neurons. This microglia signature was not observed in microglial lines or in monocytes recruited to the CNS, and was also observed in human microglia. We found that TGF-ß was required for the in vitro development of microglia that express the microglial molecular signature characteristic of adult microglia and that microglia were absent in the CNS of TGF-ß1-deficient mice. Our results identify a unique microglial signature that is dependent on TGF-ß signaling and provide insights into microglial biology and the possibility of targeting microglia for the treatment of CNS disease.


Asunto(s)
Sistema Nervioso Central/citología , Microglía/metabolismo , Transducción de Señal/genética , Factor de Crecimiento Transformador beta1/metabolismo , Análisis de Varianza , Animales , Animales Recién Nacidos , Antígenos CD/metabolismo , Células Cultivadas , Cromatografía por Intercambio Iónico , Embrión de Mamíferos , Femenino , Citometría de Flujo , Regulación del Desarrollo de la Expresión Génica/fisiología , Humanos , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/genética , Microglía/clasificación , Neuronas/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Análisis de Matrices Tisulares , Factor de Crecimiento Transformador beta1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...