Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(8): e0272120, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35976855

RESUMEN

Climate change is already impacting coastal communities, and ongoing and future shifts in fisheries species productivity from climate change have implications for the livelihoods and cultures of coastal communities. Harvested marine species in the California Current Large Marine Ecosystem support U.S. West Coast communities economically, socially, and culturally. Ecological vulnerability assessments exist for individual species in the California Current but ecological and human vulnerability are linked and vulnerability is expected to vary by community. Here, we present automatable, reproducible methods for assessing the vulnerability of U.S. West Coast fishing dependent communities to climate change within a social-ecological vulnerability framework. We first assessed the ecological risk of marine resources, on which fishing communities rely, to 50 years of climate change projections. We then combined this with the adaptive capacity of fishing communities, based on social indicators, to assess the potential ability of communities to cope with future changes. Specific communities (particularly in Washington state) were determined to be at risk to climate change mainly due to economic reliance on at risk marine fisheries species, like salmon, hake, or sea urchins. But, due to higher social adaptive capacity, these communities were often not found to be the most vulnerable overall. Conversely, certain communities that were not the most at risk, ecologically and economically, ranked in the category of highly vulnerable communities due to low adaptive capacity based on social indicators (particularly in Southern California). Certain communities were both ecologically at risk due to catch composition and socially vulnerable (low adaptive capacity) leading to the highest tier of vulnerability. The integration of climatic, ecological, economic, and societal data reveals that factors underlying vulnerability are variable across fishing communities on the U.S West Coast, and suggests the need to develop a variety of well-aligned strategies to adapt to the ecological impacts of climate change.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Explotaciones Pesqueras , Humanos , Caza , Salmón
2.
Marit Stud ; 21(2): 235-254, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35299646

RESUMEN

Coastal communities are being impacted by climate change, affecting the livelihoods, food security, and wellbeing of residents. Human wellbeing is influenced by the heath of the environment through numerous pathways and is increasingly being included as a desired outcome in environmental management. However, the contributors to wellbeing can be subjective and the values and perspectives of decision-makers can affect the aspects of wellbeing that are included in planning. We used Q methodology to examine how a group of individuals in fisheries management prioritize components of wellbeing that may be important to coastal communities in the California Current social-ecological system (SES). The California Current SES is an integrated system of ecological and human communities with complex linkages and connections where commercial fishing is part of the culture and an important livelihood. We asked individuals that sit on advisory bodies to the Pacific Fisheries Management Council to rank 36 statements about coastal community wellbeing, ultimately revealing three discourses about how we can best support or improve wellbeing in those communities. We examine how the priorities differ between the discourses, identify areas of consensus, and discuss how these perspectives may influence decision-making when it comes to tradeoffs inherent in climate adaptation in fisheries. Lastly, we consider if and how thoughts about priorities have been affected by the COVID-19 pandemic.

3.
Ecol Appl ; 32(4): e2578, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35191110

RESUMEN

The ocean's mesopelagic zone (200-1000 m) remains one of the most understudied parts of the ocean despite knowledge that mesopelagic fishes are highly abundant. Apex predators from the surface waters are known to consume these fishes, constituting an important ecological interaction. Some countries have begun exploring the potential harvest of mesopelagic fishes to supply fishmeal and fish oil markets due to the high fish abundance in the mesopelagic zone compared with overfished surface waters. This study explored the economic and ecological implications of a moratorium on the harvest of mesopelagic fishes such as lanternfish off the US West Coast, one of the few areas where such resources are managed. We adapted a bioeconomic decision model to examine the tradeoffs between the values gained from a hypothetical mesopelagic fishery with the potential values lost from declines in predators of mesopelagic fishes facing a reduced prey resource. The economic rationale for a moratorium on harvesting mesopelagics was sensitive both to ecological relationships and the scale of the nonmarket values attributed to noncommercial predators. Using a California Current-based ecological simulation model, we found that most modeled predators of mesopelagic fishes increased in biomass even under high mesopelagic harvest rates, but the changes (either increases or decreases) were small, with relatively few predators responding with more than a 10% change in their biomass. While the ecological simulations implied that a commercial mesopelagic fishery might not have large biomass impacts for many species in the California Current system, there is still a need to further explore the various roles of the mesopelagic zone in the ocean.


Asunto(s)
Ecosistema , Explotaciones Pesqueras , Animales , Biomasa , Conservación de los Recursos Naturales , Peces , Modelos Teóricos
4.
Ecol Appl ; 31(7): e02401, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34218492

RESUMEN

Fisheries for forage fish may affect the survival and reproduction of piscivorous predators, especially seabirds. However, seabirds have evolved life history strategies to cope with natural fluctuations in prey and it is difficult to separate effects of fishing on seabirds from impacts of natural variability. To date, potential impacts of forage fisheries on seabirds have mainly been explored using ecosystem models that simplify seabird-forage-fish dynamics. We sought to explore how different forage fish harvest policies affect seabirds, accounting for structured population dynamics, life history specifics, and variation in forage fish dependencies across life stages; and how impacts vary across seabird and forage fish life histories. To explore these impacts, we developed an age-stage structured seabird model that incorporates seabird diet specialization, foraging behavior, and reproductive strategy, as well as different functional responses between prey availability and adult survival, juvenile survival, reproductive success, and breeder propensity. We parameterized this model for two contrasting seabird life histories: (1) a low fecundity, limited foraging range, diet specialist ("restricted"); and (2) a high fecundity, wide ranging, diet generalist ("flexible"). Each was paired with two different forage fish prey archetypes that were fished under various control rules. The restricted seabird population was expectedly less robust to constant fishing pressure than the flexible seabird, and this sensitivity was mainly due to functional response parameterization, rather than other life history parameters. Particularly, the restricted seabird was highly sensitive to the relationship between prey availability and adult survival but was not sensitive to the relationship between prey and reproductive success. An adaptive biomass-limit harvest rule for forage fish resulted in substantially higher seabird abundance compared to constant fishing across all scenarios, with minimal trade-offs to the fishery (depending on fishery management objectives). However, mechanisms governing the impact of the forage fish fishery on the seabird varied by forage fish type. Therefore, tailoring forage fish management strategies to forage fish life history can lead to mutually acceptable outcomes for fisheries and seabirds. If data or time are limited, an adaptive control rule is likely a safe bet for meeting seabird conservation objectives with limited impacts to fisheries.


Asunto(s)
Ecosistema , Explotaciones Pesqueras , Animales , Biomasa , Aves , Conservación de los Recursos Naturales , Dinámica Poblacional
6.
Proc Natl Acad Sci U S A ; 112(21): 6648-52, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25848018

RESUMEN

Forage fish support the largest fisheries in the world but also play key roles in marine food webs by transferring energy from plankton to upper trophic-level predators, such as large fish, seabirds, and marine mammals. Fishing can, thereby, have far reaching consequences on marine food webs unless safeguards are in place to avoid depleting forage fish to dangerously low levels, where dependent predators are most vulnerable. However, disentangling the contributions of fishing vs. natural processes on population dynamics has been difficult because of the sensitivity of these stocks to environmental conditions. Here, we overcome this difficulty by collating population time series for forage fish populations that account for nearly two-thirds of global catch of forage fish to identify the fingerprint of fisheries on their population dynamics. Forage fish population collapses shared a set of common and unique characteristics: high fishing pressure for several years before collapse, a sharp drop in natural population productivity, and a lagged response to reduce fishing pressure. Lagged response to natural productivity declines can sharply amplify the magnitude of naturally occurring population fluctuations. Finally, we show that the magnitude and frequency of collapses are greater than expected from natural productivity characteristics and therefore, likely attributed to fishing. The durations of collapses, however, were not different from those expected based on natural productivity shifts. A risk-based management scheme that reduces fishing when populations become scarce would protect forage fish and their predators from collapse with little effect on long-term average catches.


Asunto(s)
Peces , Cadena Alimentaria , Animales , Biomasa , Conservación de los Recursos Naturales , Ecosistema , Explotaciones Pesqueras , Peces/fisiología , Modelos Biológicos , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA