Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Mech Ageing Dev ; 218: 111916, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38364983

RESUMEN

In old age, impaired immunity causes high susceptibility to infections and cancer, higher morbidity and mortality, and poorer vaccination efficiency. Many factors, such as genetics, diet, and lifestyle, impact aging. This study aimed to investigate how immune responses change with age in healthy Dutch and Tanzanian individuals and identify common metabolites associated with an aged immune profile. We performed untargeted metabolomics from plasma to identify age-associated metabolites, and we correlated their concentrations with ex-vivo cytokine production by immune cells, DNA methylation-based epigenetic aging, and telomere length. Innate immune responses were impacted differently by age in Dutch and Tanzanian cohorts. Age-related decline in steroid hormone precursors common in both populations was associated with higher systemic inflammation and lower cytokine responses. Hippurate and 2-phenylacetamide, commonly more abundant in older individuals, were negatively correlated with cytokine responses and telomere length and positively correlated with epigenetic aging. Lastly, we identified several metabolites that might contribute to the stronger decline in innate immunity with age in Tanzanians. The shared metabolomic signatures of the two cohorts suggest common mechanisms of immune aging, revealing metabolites with potential contributions. These findings also reflect genetic or environmental effects on circulating metabolites that modulate immune responses.


Asunto(s)
Envejecimiento , Pueblo de África Oriental , Pueblo Europeo , Anciano , Humanos , Citocinas , Inmunidad Innata , Metaboloma
2.
Immunity ; 57(1): 171-187.e14, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38198850

RESUMEN

Immune responses are tightly regulated yet highly variable between individuals. To investigate human population variation of trained immunity, we immunized healthy individuals with Bacillus Calmette-Guérin (BCG). This live-attenuated vaccine induces not only an adaptive immune response against tuberculosis but also triggers innate immune activation and memory that are indicative of trained immunity. We established personal immune profiles and chromatin accessibility maps over a 90-day time course of BCG vaccination in 323 individuals. Our analysis uncovered genetic and epigenetic predictors of baseline immunity and immune response. BCG vaccination enhanced the innate immune response specifically in individuals with a dormant immune state at baseline, rather than providing a general boost of innate immunity. This study advances our understanding of BCG's heterologous immune-stimulatory effects and trained immunity in humans. Furthermore, it highlights the value of epigenetic cell states for connecting immune function with genotype and the environment.


Asunto(s)
Vacuna BCG , Inmunidad Entrenada , Humanos , Multiómica , Vacunación , Epigénesis Genética
3.
Nat Commun ; 15(1): 114, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167829

RESUMEN

Bacillus Calmette-Guèrin - vaccination induces not only protection in infants and young children against severe forms of tuberculosis, but also against non-tuberculosis related all-cause mortality. To delineate different factors influencing mycobacterial growth control, here we first investigate the effects of BCG-vaccination in healthy Dutch adults. About a quarter of individuals already control BCG-growth prior to vaccination, whereas a quarter of the vaccinees acquires the capacity to control BCG upon vaccination. This leaves half of the population incapable to control BCG-growth. Single cell RNA sequencing identifies multiple processes associated with mycobacterial growth control. These data suggest (i) that already controllers employ different mechanisms to control BCG-growth than acquired controllers, and (ii) that half of the individuals fail to develop measurable growth control irrespective of BCG-vaccination. These results shed important new light on the variable immune responses to mycobacteria in humans and may impact on improved vaccination against tuberculosis and other diseases.


Asunto(s)
Mycobacterium , Tuberculosis , Adulto , Lactante , Niño , Humanos , Preescolar , Vacuna BCG , Tuberculosis/microbiología , Vacunación/métodos
4.
J Leukoc Biol ; 115(1): 149-163, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-37672677

RESUMEN

Bacillus Calmette-Guérin vaccine is well known for inducing trained immunity in myeloid and natural killer cells, which can explain its cross-protective effect against heterologous infections. Although displaying functional characteristics of both adaptive and innate immunity, γδ T-cell memory has been only addressed in a pathogen-specific context. In this study, we aimed to determine whether human γδ T cells can mount trained immunity and therefore contribute to the cross-protective effect of the Bacillus Calmette-Guérin vaccine. We investigated in vivo induction of innate memory in γδ T cells by Bacillus Calmette-Guérin vaccination in healthy human volunteers by combining single-cell RNA sequencing technology with immune functional assays. The total number of γδ T cells and membrane markers of activation was not influenced by Bacillus Calmette-Guérin vaccination. In contrast, Bacillus Calmette-Guérin changed γδ T cells' transcriptional programs and increased their responsiveness to heterologous bacterial and fungal stimuli, including lipopolysaccharide and Candida albicans, as simultaneously characterized by higher tumor necrosis factor and interferon γ production, weeks after vaccination. Human γδ T cells in adults display the potential to develop a trained immunity phenotype after Bacillus Calmette-Guérin vaccination.


Asunto(s)
Vacuna BCG , Mycobacterium bovis , Adulto , Humanos , Inmunidad Entrenada , Interferón gamma , Inmunidad Innata , Vacunación
5.
EBioMedicine ; 99: 104935, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38134621

RESUMEN

BACKGROUND: Endogenous steroid hormones have significant effects on inflammatory and immune processes, but the immunological activities of steroidogenesis precursors remain largely unexplored. METHODS: We conducted a systematic approach to examine the association between steroid hormones profile and immune traits in a cohort of 534 healthy volunteers. Serum concentrations of steroid hormones and their precursors (cortisol, progesterone, testosterone, androstenedione, 11-deoxycortisol and 17-OH progesterone) were determined by liquid chromatography-tandem mass spectrometry. Immune traits were evaluated by quantifying cellular composition of the circulating immune system and ex vivo cytokine responses elicited by major human pathogens and microbial ligands. An independent cohort of 321 individuals was used for validation, followed by in vitro validation experiments. FINDINGS: We observed a positive association between 11-deoxycortisol and lymphoid cellular subsets numbers and function (especially IL-17 response). The association with lymphoid cellularity was validated in an independent validation cohort. In vitro experiments showed that, as compared to androstenedione and 17-OH progesterone, 11-deoxycortisol promoted T cell proliferation and Candida-induced Th17 polarization at physiologically relevant concentrations. Functionally, 11-deoxycortisol-treated T cells displayed a more activated phenotype (PD-L1high CD25high CD62Llow CD127low) in response to CD3/CD28 co-stimulation, and downregulated expression of T-bet nuclear transcription factor. INTERPRETATION: Our findings suggest a positive association between 11-deoxycortisol and T-cell function under physiological conditions. Further investigation is needed to explore the potential mechanisms and clinical implications. FUNDING: Found in acknowledgements.


Asunto(s)
Cortodoxona , Progesterona , Humanos , Androstenodiona , Esteroides , Fenotipo
6.
Cell Rep ; 42(6): 112658, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37330914

RESUMEN

Itaconate is an immunomodulatory metabolite produced by immune cells under microbial stimulation and certain pro-inflammatory conditions and triggers antioxidant and anti-inflammatory responses. We show that dimethyl itaconate, a derivative of itaconate previously linked to suppression of inflammation and widely employed as an alternative to the endogenous metabolite, can induce long-term transcriptional, epigenomic, and metabolic changes, characteristic of trained immunity. Dimethyl itaconate alters glycolytic and mitochondrial energetic metabolism, ultimately leading to increased responsiveness to microbial ligand stimulation. Subsequently, mice treated with dimethyl itaconate present increased survival to infection with Staphylococcus aureus. Additionally, itaconate levels in human plasma correlate with enhanced ex vivo pro-inflammatory cytokine production. Collectively, these findings demonstrate that dimethyl itaconate displays short-term anti-inflammatory characteristics and the capacity to induce long-term trained immunity. This pro-and anti-inflammatory dichotomy of dimethyl itaconate is likely to induce complex immune responses and should be contemplated when considering itaconate derivatives in a therapeutic context.


Asunto(s)
Inmunidad Innata , Macrófagos , Ratones , Humanos , Animales , Macrófagos/metabolismo , Antiinflamatorios/metabolismo
7.
Elife ; 122023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37158692

RESUMEN

Background: Cellular metabolism is critical for the host immune function against pathogens, and metabolomic analysis may help understand the characteristic immunopathology of tuberculosis. We performed targeted metabolomic analyses in a large cohort of patients with tuberculous meningitis (TBM), the most severe manifestation of tuberculosis, focusing on tryptophan metabolism. Methods: We studied 1069 Indonesian and Vietnamese adults with TBM (26.6% HIV-positive), 54 non-infectious controls, 50 with bacterial meningitis, and 60 with cryptococcal meningitis. Tryptophan and downstream metabolites were measured in cerebrospinal fluid (CSF) and plasma using targeted liquid chromatography-mass spectrometry. Individual metabolite levels were associated with survival, clinical parameters, CSF bacterial load and 92 CSF inflammatory proteins. Results: CSF tryptophan was associated with 60-day mortality from TBM (hazard ratio [HR] = 1.16, 95% confidence interval [CI] = 1.10-1.24, for each doubling in CSF tryptophan) both in HIV-negative and -positive patients. CSF tryptophan concentrations did not correlate with CSF bacterial load nor CSF inflammation but were negatively correlated with CSF interferon-gamma concentrations. Unlike tryptophan, CSF concentrations of an intercorrelating cluster of downstream kynurenine metabolites did not predict mortality. These CSF kynurenine metabolites did however correlate with CSF inflammation and markers of blood-CSF leakage, and plasma kynurenine predicted death (HR 1.54, 95% CI = 1.22-1.93). These findings were mostly specific for TBM, although high CSF tryptophan was also associated with mortality from cryptococcal meningitis. Conclusions: TBM patients with a high baseline CSF tryptophan or high systemic (plasma) kynurenine are at increased risk of death. These findings may reveal new targets for host-directed therapy. Funding: This study was supported by National Institutes of Health (R01AI145781) and the Wellcome Trust (110179/Z/15/Z and 206724/Z/17/Z).


Asunto(s)
Infecciones por VIH , Meningitis Criptocócica , Tuberculosis Meníngea , Adulto , Humanos , Tuberculosis Meníngea/tratamiento farmacológico , Triptófano/metabolismo , Quinurenina , Infecciones por VIH/tratamiento farmacológico , Inflamación/microbiología
8.
Cell Rep ; 42(5): 112487, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37155329

RESUMEN

Bacillus Calmette-Guérin (BCG) vaccination is a prototype model for the study of trained immunity (TI) in humans, and results in a more effective response of innate immune cells upon stimulation with heterologous stimuli. Here, we investigate the heterogeneity of TI induction by single-cell RNA sequencing of immune cells collected from 156 samples. We observe that both monocytes and CD8+ T cells show heterologous transcriptional responses to lipopolysaccharide, with an active crosstalk between these two cell types. Furthermore, the interferon-γ pathway is crucial in BCG-induced TI, and it is upregulated in functional high responders. Data-driven analyses and functional experiments reveal STAT1 to be one of the important transcription factors for TI shared in all identified monocyte subpopulations. Finally, we report the role of type I interferon-related and neutrophil-related TI transcriptional programs in patients with sepsis. These findings provide comprehensive insights into the importance of monocyte heterogeneity during TI in humans.


Asunto(s)
Mycobacterium bovis , Humanos , Mycobacterium bovis/metabolismo , Vacuna BCG , Inmunidad Entrenada , Linfocitos T CD8-positivos , Interferón gamma/metabolismo , Inmunidad Innata
9.
Cell Genom ; 3(2): 100232, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36474914

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes severe COVID-19 in some patients and mild COVID-19 in others. Dysfunctional innate immune responses have been identified to contribute to COVID-19 severity, but the key regulators are still unknown. Here, we present an integrative single-cell multi-omics analysis of peripheral blood mononuclear cells from hospitalized and convalescent COVID-19 patients. In classical monocytes, we identified genes that were potentially regulated by differential chromatin accessibility. Then, sub-clustering and motif-enrichment analyses revealed disease condition-specific regulation by transcription factors and their targets, including an interaction between C/EBPs and a long-noncoding RNA LUCAT1, which we validated through loss-of-function experiments. Finally, we investigated genetic risk variants that exhibit allele-specific open chromatin (ASoC) in COVID-19 patients and identified a SNP rs6800484-C, which is associated with lower expression of CCR2 and may contribute to higher viral loads and higher risk of COVID-19 hospitalization. Altogether, our study highlights the diverse genetic and epigenetic regulators that contribute to COVID-19.

10.
Allergy ; 78(2): 439-453, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35986602

RESUMEN

BACKGROUND: Understanding the complex orchestrated inflammation in atopic dermatitis (AD), one of the most common chronic inflammatory diseases worldwide, is essential for therapeutic approaches. However, a comparative analysis on the single-cell level of the inflammation signatures correlated with the severity is missing so far. METHODS: We applied single-cell RNA and T-cell receptor (TCR) sequencing on immune cells enriched from skin biopsies and matched blood samples of AD in comparison with psoriasis (PS) patients. RESULTS: Clonally propagated skin-derived T cells showed disease-specific TCR motifs shared between patients which was more pronounced in PS compared to AD. The disease-specific T-cell clusters were mostly of a Th2/Th22 sub-population in AD and Th17/Tc17 in PS, and their numbers were associated with severity scores in both diseases. Herein, we provide for the first time a list that associates cell type-specific gene expression with the severity of the two most common chronic inflammatory skin diseases. Investigating the cell signatures in the patients´ PBMCs and skin stromal cells, a systemic involvement of type-3 inflammation was clearly detectable in PS circulating cells, while in AD inflammatory signatures were most pronounced in fibroblasts, pericytes, and keratinocytes. Compositional and functional analyses of myeloid cells revealed the activation of antiviral responses in macrophages in association with disease severity in both diseases. CONCLUSION: Different disease-driving cell types and subtypes which contribute to the hallmarks of type-2 and type-3 inflammatory signatures and are associated with disease activities could be identified by single-cell RNA-seq and TCR-seq in AD and PS.


Asunto(s)
Dermatitis Atópica , Psoriasis , Enfermedades de la Piel , Humanos , Piel/patología , Enfermedades de la Piel/patología , Inflamación/patología , Enfermedad Crónica , Inmunidad
11.
Front Immunol ; 13: 1027122, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36405747

RESUMEN

The ongoing Coronavirus Disease 2019 (COVID-19) pandemic is caused by the highly infectious Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). There is an urgent need for biomarkers that will help in better stratification of patients and contribute to personalized treatments. We performed targeted proteomics using the Olink platform and systematically investigated protein concentrations in 350 hospitalized COVID-19 patients, 186 post-COVID-19 individuals, and 61 healthy individuals from 3 independent cohorts. Results revealed a signature of acute SARS-CoV-2 infection, which is represented by inflammatory biomarkers, chemokines and complement-related factors. Furthermore, the circulating proteome is still significantly affected in post-COVID-19 samples several weeks after infection. Post-COVID-19 individuals are characterized by upregulation of mediators of the tumor necrosis (TNF)-α signaling pathways and proteins related to transforming growth factor (TGF)-ß. In addition, the circulating proteome is able to differentiate between patients with different COVID-19 disease severities, and is associated with the time after infection. These results provide important insights into changes induced by SARS-CoV-2 infection at the proteomic level by integrating several cohorts to obtain a large disease spectrum, including variation in disease severity and time after infection. These findings could guide the development of host-directed therapy in COVID-19.


Asunto(s)
COVID-19 , Proteómica , Humanos , Proteoma , SARS-CoV-2 , Biomarcadores
12.
PLoS Biol ; 20(9): e3001765, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36094960

RESUMEN

The antituberculosis vaccine Bacillus Calmette-Guérin (BCG) induces nonspecific protection against heterologous infections, at least partly through induction of innate immune memory (trained immunity). The amplitude of the response to BCG is variable, but the factors that influence this response are poorly understood. Metabolites, either released by cells or absorbed from the gut, are known to influence immune responses, but whether they impact BCG responses is not known. We vaccinated 325 healthy individuals with BCG, and collected blood before, 2 weeks and 3 months after vaccination, to assess the influence of circulating metabolites on the immune responses induced by BCG. Circulating metabolite concentrations after BCG vaccination were found to have a more pronounced impact on trained immunity responses, such as the increase in IL-1ß and TNF-α production upon Staphylococcus aureus stimulation, than on specific adaptive immune memory, assessed as IFN-γ production in response to Mycobacterium tuberculosis. Circulating metabolites at baseline were able to predict trained immunity responses at 3 months after vaccination and enrichment analysis based on the metabolites positively associated with trained immunity revealed enrichment of the tricarboxylic acid (TCA) cycle and glutamine metabolism, both of which were previously found to be important for trained immunity. Several new metabolic pathways that influence trained immunity were identified, among which taurine metabolism associated with BCG-induced trained immunity, a finding validated in functional experiments. In conclusion, circulating metabolites are important factors influencing BCG-induced trained immunity in humans. Modulation of metabolic pathways may be a novel strategy to improve vaccine and trained immunity responses.


Asunto(s)
Vacuna BCG , Mycobacterium bovis , Antituberculosos , Glutamina , Humanos , Inmunidad Innata , Metaboloma , Taurina , Ácidos Tricarboxílicos , Factor de Necrosis Tumoral alfa , Vacunación
13.
Med ; 3(1): 6-24, 2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-35590145

RESUMEN

Bacillus Calmette-Guérin (BCG) was developed exactly 100 years ago, and it is still the only licensed tuberculosis (TB) vaccine and the most frequently administered of all vaccines worldwide. Despite universal vaccination policies in TB-endemic settings, the burden of TB remains high. Although BCG protects against Mycobacterium tuberculosis infection and TB disease, the level of protection varies greatly between age groups and settings. In this review, we present a historical perspective and describe the evidence for BCG's ability to protect against TB as well as the factors that influence protection. We also present the immunological mechanisms through which BCG vaccination induces protection, focusing on T cell, B cell, and innate immunity. Finally, we discuss several possibilities to boost BCG's efficacy, including alternative vaccination routes, BCG revaccination, and use of recombinant BCG vaccines, and describe the knowledge gaps that exist with respect to BCG's protection against TB.


Asunto(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Vacunas contra la Tuberculosis , Tuberculosis , Vacuna BCG , Humanos , Tuberculosis/prevención & control , Vacunación
14.
Front Immunol ; 13: 859387, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35634344

RESUMEN

Recent genome-wide association studies (GWASs) of COVID-19 patients of European ancestry have identified genetic loci significantly associated with disease severity. Here, we employed the detailed clinical, immunological and multi-omics dataset of the Human Functional Genomics Project (HFGP) to explore the physiological significance of the host genetic variants that influence susceptibility to severe COVID-19. A genomics investigation intersected with functional characterization of individuals with high genetic risk for severe COVID-19 susceptibility identified several major patterns: i. a large impact of genetically determined innate immune responses in COVID-19, with ii. increased susceptibility for severe disease in individuals with defective cytokine production; iii. genetic susceptibility related to ABO blood groups is probably mediated through the von Willebrand factor (VWF) and endothelial dysfunction. We further validated these identified associations at transcript and protein levels by using independent disease cohorts. These insights allow a physiological understanding of genetic susceptibility to severe COVID-19, and indicate pathways that could be targeted for prevention and therapy.


Asunto(s)
COVID-19 , Estudio de Asociación del Genoma Completo , COVID-19/genética , Predisposición Genética a la Enfermedad , Humanos , Inmunidad , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo
15.
J Leukoc Biol ; 112(2): 279-288, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35040511

RESUMEN

Atherosclerotic cardiovascular diseases (CVD) are among the leading causes of death in the world. Monocyte-derived macrophages are key players in the pathophysiology of atherosclerosis. Innate immune memory following exposure of monocytes to atherogenic compounds, such as oxidized low-density lipoproteins (oxLDL), termed trained immunity, can contribute to atherogenesis. The current study aimed to elucidate intracellular mechanisms of oxLDL-induced trained immunity. Using untargeted intracellular metabolomics in isolated human primary monocytes, we show that oxLDL-induced trained immunity results in alterations in the balance of intracellular steroid hormones in monocytes. This was reflected by a decrease in extracellular progesterone concentrations following LPS stimulation. To understand the potential effects of steroid hormones on trained immunity, monocytes were costimulated with oxLDL and the steroid hormones progesterone, hydrocortisone, dexamethasone, ß-estradiol, and dihydrotestosterone. Progesterone showed a unique ability to attenuate the enhanced TNFα and IL-6 production following oxLDL-induced trained immunity. Single nucleotide polymorphisms in the nuclear glucocorticoid, progesterone, and mineralocorticoid receptor were shown to correlate with ex vivo oxLDL-induced trained immunity in 243 healthy volunteers. Pharmacologic inhibition experiments revealed that progesterone exerts the suppression of TNFα in trained immunity via the nuclear glucocorticoid and mineralocorticoid receptors. Our data show that progesterone has a unique ability to suppress oxLDL-induced trained immunity. We hypothesize that this effect might contribute to the lower incidence of CVD in premenopausal women.


Asunto(s)
Aterosclerosis , Monocitos , Femenino , Glucocorticoides/farmacología , Humanos , Lipoproteínas LDL/farmacología , Progesterona/farmacología , Factor de Necrosis Tumoral alfa/farmacología
16.
Eur J Immunol ; 52(3): 431-446, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34821391

RESUMEN

Innate immune cells are able to build memory characteristics via a process termed "trained immunity." Host factors that influence the magnitude of the individual trained immunity response remain largely unknown. Using an integrative genomics approach, our study aimed to prioritize and understand the role of specific genes in trained immunity responses. In vitro-induced trained immunity responses were assessed in two independent population-based cohorts of healthy individuals, the 300 Bacillus Calmette-Guérin (300BCG; n = 267) and 200 Functional Genomics (200FG; n = 110) cohorts from the Human Functional Genomics Project. Genetic loci that influence cytokine responses upon trained immunity were identified by conducting a meta-analysis of QTLs identified in the 300BCG and 200FG cohorts. From the identified QTL loci, we functionally validated the role of PI3K-Akt signaling pathway and two genes that belong to the family of Siglec receptors (Siglec-5 and Siglec-14). Furthermore, we identified the H3K9 histone demethylases of the KDM4 family as major regulators of trained immunity responses. These data pinpoint an important role of metabolic and epigenetic processes in the regulation of trained immunity responses, and these findings may open new avenues for vaccine design and therapeutic interventions.


Asunto(s)
Vacuna BCG , Inmunidad Innata , Genómica , Humanos , Fosfatidilinositol 3-Quinasas/genética , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico
17.
PLoS Pathog ; 17(10): e1009928, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34695164

RESUMEN

Non-specific protective effects of certain vaccines have been reported, and long-term boosting of innate immunity, termed trained immunity, has been proposed as one of the mechanisms mediating these effects. Several epidemiological studies suggested cross-protection between influenza vaccination and COVID-19. In a large academic Dutch hospital, we found that SARS-CoV-2 infection was less common among employees who had received a previous influenza vaccination: relative risk reductions of 37% and 49% were observed following influenza vaccination during the first and second COVID-19 waves, respectively. The quadrivalent inactivated influenza vaccine induced a trained immunity program that boosted innate immune responses against various viral stimuli and fine-tuned the anti-SARS-CoV-2 response, which may result in better protection against COVID-19. Influenza vaccination led to transcriptional reprogramming of monocytes and reduced systemic inflammation. These epidemiological and immunological data argue for potential benefits of influenza vaccination against COVID-19, and future randomized trials are warranted to test this possibility.


Asunto(s)
COVID-19/inmunología , Protección Cruzada/fisiología , Inmunidad Innata/fisiología , Vacunas contra la Influenza/administración & dosificación , COVID-19/epidemiología , COVID-19/prevención & control , Citocinas/inmunología , Citocinas/metabolismo , Regulación hacia Abajo , Imidazoles/inmunología , Incidencia , Vacunas contra la Influenza/inmunología , Países Bajos/epidemiología , Personal de Hospital , Poli I-C/inmunología , Proteómica , Factores de Riesgo , Análisis de Secuencia de ARN
18.
Genome Biol ; 22(1): 275, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34551799

RESUMEN

BACKGROUND: The bacillus Calmette-Guérin (BCG) vaccine protects against tuberculosis and heterologous infections but elicits high inter-individual variation in specific and nonspecific, or trained, immune responses. While the gut microbiome is increasingly recognized as an important modulator of vaccine responses and immunity in general, its potential role in BCG-induced protection is largely unknown. RESULTS: Stool and blood were collected from 321 healthy adults before BCG vaccination, followed by blood sampling after 2 weeks and 3 months. Metagenomics based on de novo genome assembly reveals 43 immunomodulatory taxa. The nonspecific, trained immune response is detected by altered production of cytokines IL-6, IL-1ß, and TNF-α upon ex vivo blood restimulation with Staphylococcus aureus and negatively correlates with abundance of Roseburia. The specific response, measured by IFN-γ production upon Mycobacterium tuberculosis stimulation, is associated positively with Ruminococcus and Eggerthella lenta. The identified immunomodulatory taxa also have the strongest effects on circulating metabolites, with Roseburia affecting phenylalanine metabolism. This is corroborated by abundances of relevant enzymes, suggesting alternate phenylalanine metabolism modules are activated in a Roseburia species-dependent manner. CONCLUSIONS: Variability in cytokine production after BCG vaccination is associated with the abundance of microbial genomes, which in turn affect or produce metabolites in circulation. Roseburia is found to alter both trained immune responses and phenylalanine metabolism, revealing microbes and microbial products that may alter BCG-induced immunity. Together, our findings contribute to the understanding of specific and trained immune responses after BCG vaccination.


Asunto(s)
Vacuna BCG/inmunología , Microbioma Gastrointestinal/inmunología , Adolescente , Adulto , Anciano , Estudios de Cohortes , Citocinas/biosíntesis , Femenino , Firmicutes/enzimología , Firmicutes/genética , Humanos , Masculino , Metagenómica , Persona de Mediana Edad , Fenilalanina/metabolismo , Adulto Joven
19.
Front Immunol ; 12: 720090, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34434199

RESUMEN

Male sex and old age are risk factors for COVID-19 severity, but the underlying causes are unknown. A possible explanation for this might be the differences in immunological profiles in males and the elderly before the infection. With this in mind, we analyzed the abundance of circulating proteins and immune populations associated with severe COVID-19 in 2 healthy cohorts. Besides, given the seasonal profile of COVID-19, the seasonal response against SARS-CoV-2 could also be different in the elderly and males. Therefore, PBMCs of female, male, young, and old subjects in different seasons of the year were stimulated with heat-inactivated SARS-CoV-2 to investigate the season-dependent anti-SARS-CoV-2 immune response. We found that several T cell subsets, which are known to be depleted in severe COVID-19 patients, were intrinsically less abundant in men and older individuals. Plasma proteins increasing with disease severity, including HGF, IL-8, and MCP-1, were more abundant in the elderly and males. Upon in vitro SARS-CoV-2 stimulation, the elderly produced significantly more IL-1RA and had a dysregulated IFNγ response with lower production in the fall compared with young individuals. Our results suggest that the immune characteristics of severe COVID-19, described by a differential abundance of immune cells and circulating inflammatory proteins, are intrinsically present in healthy men and the elderly. This might explain the susceptibility of men and the elderly to SARS-CoV-2 infection.


Asunto(s)
COVID-19/inmunología , Adolescente , Adulto , Factores de Edad , Anciano , Envejecimiento/inmunología , Proteínas Sanguíneas/inmunología , COVID-19/fisiopatología , Estudios de Cohortes , Susceptibilidad a Enfermedades , Femenino , Humanos , Inmunidad Celular , Factores Inmunológicos , Masculino , Persona de Mediana Edad , Gravedad del Paciente , Medición de Riesgo , Estaciones del Año , Factores Sexuales , Subgrupos de Linfocitos T/inmunología , Adulto Joven
20.
Sci Adv ; 7(32)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34348906

RESUMEN

The tuberculosis vaccine BCG may protect against inflammation in the elderly as well as offer an option for protection from SARS-CoV-2 in developing countries.


Asunto(s)
Vacuna BCG , COVID-19 , Anciano , Humanos , Inflamación , SARS-CoV-2 , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...