Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 43(21): 3789-3806, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37055179

RESUMEN

Individual neurons or muscle cells express many G-protein-coupled receptors (GPCRs) for neurotransmitters and neuropeptides, yet it remains unclear how cells integrate multiple GPCR signals that all must activate the same few G-proteins. We analyzed this issue in the Caenorhabditis elegans egg-laying system, where multiple GPCRs on muscle cells promote contraction and egg laying. We genetically manipulated individual GPCRs and G-proteins specifically in these muscle cells within intact animals and then measured egg laying and muscle calcium activity. Two serotonin GPCRs on the muscle cells, Gαq-coupled SER-1 and Gαs-coupled SER-7, together promote egg laying in response to serotonin. We found that signals produced by either SER-1/Gαq or SER-7/Gαs alone have little effect, but these two subthreshold signals combine to activate egg laying. We then transgenically expressed natural or designer GPCRs in the muscle cells and found that their subthreshold signals can also combine to induce muscle activity. However, artificially inducing strong signaling through just one of these GPCRs can be sufficient to induce egg laying. Knocking down Gαq and Gαs in the egg-laying muscle cells induced egg-laying defects that were stronger than those of a SER-1/SER-7 double knockout, indicating that additional endogenous GPCRs also activate the muscle cells. These results show that in the egg-laying muscles multiple GPCRs for serotonin and other signals each produce weak effects that individually do not result in strong behavioral outcomes. However, they combine to produce sufficient levels of Gαq and Gαs signaling to promote muscle activity and egg laying.SIGNIFICANCE STATEMENT How can neurons and other cells gather multiple independent pieces of information from the soup of chemical signals in their environment and compute an appropriate response? Most cells express >20 GPCRs that each receive one signal and transmit that information through three main types of G-proteins. We analyzed how this machinery generates responses by studying the egg-laying system of C. elegans, where serotonin and multiple other signals act through GPCRs on the egg-laying muscles to promote muscle activity and egg laying. We found that individual GPCRs within an intact animal each generate effects too weak to activate egg laying. However, combined signaling from multiple GPCR types reaches a threshold capable of activating the muscle cells.


Asunto(s)
Caenorhabditis elegans , Serotonina , Animales , Serotonina/farmacología , Músculos , Proteínas de Unión al GTP , Células Musculares
2.
Curr Protoc ; 2(12): e610, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36521003

RESUMEN

NeuroPAL (Neuronal Polychromatic Atlas of Landmarks) is a recently developed transgene that labels each of the 118 classes of neurons in C. elegans with various combinations of four fluorescent proteins. This neuron-type-specific labeling helps identify neurons that could otherwise be confused with neighboring neurons. Neuron identification enables researchers to combine new data that they generate on a C. elegans neuron with existing datasets on that same neuron, such as its synaptic connections, neurotransmitters, and transcriptome. An impediment to using NeuroPAL, however, is overcoming the steep learning curve for interpreting three-dimensional (3D) fluorescence images of crowded neural ganglia within which different neurons may be similarly colored, some neurons are only very faintly labeled, and the positions of some neurons are variable. Here, we provide protocols that allow researchers to learn to accurately identify neurons within 3D images of NeuroPAL-labeled animals. We provide 3D reference images that illustrate NeuroPAL labeling of each body region, and additional 3D images as training exercises to learn to accurately carry out C. elegans neuron identifications. We also provide tools to annotate images in 3D, and suggest that such 3D annotated images should be the standard for documenting C. elegans neuron identifications for publication. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Using Imaris software to view and annotate images of NeuroPAL-labeled animals in 3D Alternate Protocol: Using FIJI/ImageJ software to view and annotate images of NeuroPAL-labeled animals in 3D Basic Protocol 2: Identifying tail neurons-an introduction to identifying neurons Basic Protocol 3: Identifying midbody neurons Basic Protocol 4: Identifying anterior head neurons Basic Protocol 5: Identifying posterior head neurons Basic Protocol 6: Identifying ventral head and retrovesicular ganglion neurons.


Asunto(s)
Caenorhabditis elegans , Neuronas , Animales , Caenorhabditis elegans/fisiología , Fluorescencia , Neuronas/fisiología , Imagenología Tridimensional/métodos , Ganglios
3.
G3 (Bethesda) ; 11(8)2021 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-34003969

RESUMEN

Gαo is the alpha subunit of the major heterotrimeric G protein in neurons and mediates signaling by every known neurotransmitter, yet the signaling mechanisms activated by Gαo remain to be fully elucidated. Genetic analysis in Caenorhabditis elegans has shown that Gαo signaling inhibits neuronal activity and neurotransmitter release, but studies of the molecular mechanisms underlying these effects have been limited by lack of tools to complement genetic studies with other experimental approaches. Here, we demonstrate that inserting the green fluorescent protein (GFP) into an internal loop of the Gαo protein results in a tagged protein that is functional in vivo and that facilitates cell biological and biochemical studies of Gαo. Transgenic expression of Gαo-GFP rescues the defects caused by loss of endogenous Gαo in assays of egg laying and locomotion behaviors. Defects in body morphology caused by loss of Gαo are also rescued by Gαo-GFP. The Gαo-GFP protein is localized to the plasma membrane of neurons, mimicking localization of endogenous Gαo. Using GFP as an epitope tag, Gαo-GFP can be immunoprecipitated from C. elegans lysates to purify Gαo protein complexes. The Gαo-GFP transgene reported in this study enables studies involving in vivo localization and biochemical purification of Gαo to compliment the already well-developed genetic analysis of Gαo signaling.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proteínas de Unión al GTP , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Proteínas Fluorescentes Verdes/genética , Transducción de Señal
4.
J Neurosci ; 40(39): 7475-7488, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32847964

RESUMEN

Maps of the synapses made and neurotransmitters released by all neurons in model systems, such as Caenorhabditis elegans have left still unresolved how neural circuits integrate and respond to neurotransmitter signals. Using the egg-laying circuit of C. elegans as a model, we mapped which cells express each of the 26 neurotransmitter GPCRs of this organism and also genetically analyzed the functions of all 26 GPCRs. We found that individual neurons express many distinct receptors, epithelial cells often express neurotransmitter receptors, and receptors are often positioned to receive extrasynaptic signals. Receptor knockouts reveal few egg-laying defects under standard laboratory conditions, suggesting that the receptors function redundantly or regulate egg-laying only in specific conditions; however, increasing receptor signaling through overexpression more efficiently reveals receptor functions. This map of neurotransmitter GPCR expression and function in the egg-laying circuit provides a model for understanding GPCR signaling in other neural circuits.SIGNIFICANCE STATEMENT Neurotransmitters signal through GPCRs to modulate activity of neurons, and changes in such signaling can underlie conditions such as depression and Parkinson's disease. To determine how neurotransmitter GPCRs together help regulate function of a neural circuit, we analyzed the simple egg-laying circuit in the model organism C. elegans We identified all the cells that express every neurotransmitter GPCR and genetically analyzed how each GPCR affects the behavior the circuit produces. We found that many neurotransmitter GPCRs are expressed in each neuron, that neurons also appear to use these receptors to communicate with other cell types, and that GPCRs appear to often act redundantly or only under specific conditions to regulate circuit function.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Neuronas/citología , Neurotransmisores/metabolismo , Oviposición , Receptores Acoplados a Proteínas G/metabolismo , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Vías Nerviosas/citología , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Receptores Acoplados a Proteínas G/genética
5.
PLoS Genet ; 15(1): e1007896, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30677018

RESUMEN

Neurons typically release both a small-molecule neurotransmitter and one or more neuropeptides, but how these two types of signal from the same neuron might act together remains largely obscure. For example, serotonergic neurons in mammalian brain express the neuropeptide Substance P, but it is unclear how this co-released neuropeptide might modulate serotonin signaling. We studied this issue in C. elegans, in which all serotonergic neurons express the neuropeptide NLP-3. The serotonergic Hermaphrodite Specific Neurons (HSNs) are command motor neurons within the egg-laying circuit which have been shown to release serotonin to initiate egg-laying behavior. We found that egg-laying defects in animals lacking serotonin were far milder than in animals lacking HSNs, suggesting that HSNs must release other signal(s) in addition to serotonin to stimulate egg laying. While null mutants for nlp-3 had only mild egg-laying defects, animals lacking both serotonin and NLP-3 had severe defects, similar to those of animals lacking HSNs. Optogenetic activation of HSNs induced egg laying in wild-type animals, and in mutant animals lacking either serotonin or NLP-3, but failed to induce egg laying in animals lacking both. We recorded calcium activity in the egg-laying muscles of animals lacking either serotonin, NLP-3, or both. The single mutants, and to a greater extent the double mutant, showed muscle activity that was uncoordinated and unable to expel eggs. Specifically, the vm2 muscles cells, which are direct postsynaptic targets of the HSN, failed to contract simultaneously with other egg-laying muscle cells. Our results show that the HSN neurons use serotonin and the neuropeptide NLP-3 as partially redundant co-transmitters that together stimulate and coordinate activity of the target cells onto which they are released.


Asunto(s)
Conducta Animal , Neuropéptidos/genética , Oviposición/genética , Serotonina/genética , Acetilcolina/genética , Acetilcolina/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Trastornos del Desarrollo Sexual/genética , Femenino , Masculino , Neuronas Motoras/metabolismo , Mutación , Neurotransmisores/genética , Neuronas Serotoninérgicas/metabolismo , Transducción de Señal
6.
WormBook ; 2018: 1-52, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-26937633

RESUMEN

Neurotransmitters signal via G protein coupled receptors (GPCRs) to modulate activity of neurons and muscles. C. elegans has ∼150 G protein coupled neuropeptide receptor homologs and 28 additional GPCRs for small-molecule neurotransmitters. Genetic studies in C. elegans demonstrate that neurotransmitters diffuse far from their release sites to activate GPCRs on distant cells. Individual receptor types are expressed on limited numbers of cells and thus can provide very specific regulation of an individual neural circuit and behavior. G protein coupled neurotransmitter receptors signal principally via the three types of heterotrimeric G proteins defined by the G alpha subunits Gαo, Gαq, and Gαs. Each of these G alpha proteins is found in all neurons plus some muscles. Gαo and Gαq signaling inhibit and activate neurotransmitter release, respectively. Gαs signaling, like Gαq signaling, promotes neurotransmitter release. Many details of the signaling mechanisms downstream of Gαq and Gαs have been delineated and are consistent with those of their mammalian orthologs. The details of the signaling mechanism downstream of Gαo remain a mystery. Forward genetic screens in C. elegans have identified new molecular components of neural G protein signaling mechanisms, including Regulators of G protein Signaling (RGS proteins) that inhibit signaling, a new Gαq effector (the Trio RhoGEF domain), and the RIC-8 protein that is required for neuronal Gα signaling. A model is presented in which G proteins sum up the variety of neuromodulator signals that impinge on a neuron to calculate its appropriate output level.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Neurotransmisores/metabolismo , Transducción de Señal , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Unión al GTP Heterotriméricas/genética
7.
Elife ; 52016 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-27849154

RESUMEN

Like many behaviors, Caenorhabditis elegans egg laying alternates between inactive and active states. To understand how the underlying neural circuit turns the behavior on and off, we optically recorded circuit activity in behaving animals while manipulating circuit function using mutations, optogenetics, and drugs. In the active state, the circuit shows rhythmic activity phased with the body bends of locomotion. The serotonergic HSN command neurons initiate the active state, but accumulation of unlaid eggs also promotes the active state independent of the HSNs. The cholinergic VC motor neurons slow locomotion during egg-laying muscle contraction and egg release. The uv1 neuroendocrine cells mechanically sense passage of eggs through the vulva and release tyramine to inhibit egg laying, in part via the LGC-55 tyramine-gated Cl- channel on the HSNs. Our results identify discrete signals that entrain or detach the circuit from the locomotion central pattern generator to produce active and inactive states.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Canales de Cloruro/genética , Retroalimentación Fisiológica , Oviposición/genética , Receptores de Amina Biogénica/genética , Conducta Sexual Animal/fisiología , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Canales de Cloruro/metabolismo , Colina/metabolismo , Colina/farmacología , Femenino , Regulación de la Expresión Génica , Locomoción , Neuronas Motoras/citología , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Contracción Muscular/efectos de los fármacos , Contracción Muscular/genética , Optogenética , Oviposición/efectos de los fármacos , Periodicidad , Receptores de Amina Biogénica/metabolismo , Serotonina/metabolismo , Serotonina/farmacología , Conducta Sexual Animal/efectos de los fármacos , Transducción de Señal , Tiramina/metabolismo , Tiramina/farmacología
8.
Neuron ; 92(5): 1049-1062, 2016 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-27866800

RESUMEN

Little is known about how animals integrate multiple sensory inputs in natural environments to balance avoidance of danger with approach to things of value. Furthermore, the mechanistic link between internal physiological state and threat-reward decision making remains poorly understood. Here we confronted C. elegans worms with the decision whether to cross a hyperosmotic barrier presenting the threat of desiccation to reach a source of food odor. We identified a specific interneuron that controls this decision via top-down extrasynaptic aminergic potentiation of the primary osmosensory neurons to increase their sensitivity to the barrier. We also establish that food deprivation increases the worm's willingness to cross the dangerous barrier by suppressing this pathway. These studies reveal a potentially general neural circuit architecture for internal state control of threat-reward decision making.


Asunto(s)
Toma de Decisiones/fisiología , Hambre/fisiología , Interneuronas/fisiología , Animales , Comunicación Autocrina/fisiología , Caenorhabditis elegans , Retroalimentación , Modelos Neurológicos , Red Nerviosa , Neuronas/fisiología , Neuropéptidos/metabolismo , Recompensa
9.
Mol Biol Evol ; 33(3): 820-37, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26659249

RESUMEN

Trimeric G protein signaling is a fundamental mechanism of cellular communication in eukaryotes. The core of this mechanism consists of activation of G proteins by the guanine-nucleotide exchange factor (GEF) activity of G protein coupled receptors. However, the duration and amplitude of G protein-mediated signaling are controlled by a complex network of accessory proteins that appeared and diversified during evolution. Among them, nonreceptor proteins with GEF activity are the least characterized. We recently found that proteins of the ccdc88 family possess a Gα-binding and activating (GBA) motif that confers GEF activity and regulates mammalian cell behavior. A sequence similarity-based search revealed that ccdc88 genes are highly conserved across metazoa but the GBA motif is absent in most invertebrates. This prompted us to investigate whether the GBA motif is present in other nonreceptor proteins in invertebrates. An unbiased bioinformatics search in Caenorhabditis elegans identified GBAS-1 (GBA and SPK domain containing-1) as a GBA motif-containing protein with homologs only in closely related worm species. We demonstrate that GBAS-1 has GEF activity for the nematode G protein GOA-1 and that the two proteins are coexpressed in many cells of living worms. Furthermore, we show that GBAS-1 can activate mammalian Gα-subunits and provide structural insights into the evolutionarily conserved determinants of the GBA-G protein interface. These results demonstrate that the GBA motif is a functional GEF module conserved among highly divergent proteins across evolution, indicating that the GBA-Gα binding mode is strongly constrained under selective pressure to mediate receptor-independent G protein activation in metazoans.


Asunto(s)
Evolución Biológica , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Multimerización de Proteína , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Evolución Molecular , Proteínas de Unión al GTP/química , Expresión Génica , Factores de Intercambio de Guanina Nucleótido , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal
10.
Proc Natl Acad Sci U S A ; 112(27): 8451-6, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26100902

RESUMEN

Activity of the RNA ligase RtcB has only two known functions: tRNA ligation after intron removal and XBP1 mRNA ligation during activation of the unfolded protein response. Here, we show that RtcB acts in neurons to inhibit axon regeneration after nerve injury. This function of RtcB is independent of its basal activities in tRNA ligation and the unfolded protein response. Furthermore, inhibition of axon regeneration is independent of the RtcB cofactor archease. Finally, RtcB is enriched at axon termini after nerve injury. Our data indicate that neurons have co-opted an ancient RNA modification mechanism to regulate specific and dynamic functions and identify neuronal RtcB activity as a critical regulator of neuronal growth potential.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Axones/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Regeneración Nerviosa , ARN Ligasa (ATP)/metabolismo , ARN de Helminto/metabolismo , Aminoacil-ARNt Sintetasas/genética , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Axotomía/métodos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Mutación , Neuronas/metabolismo , Neuronas/fisiología , ARN Ligasa (ATP)/genética , ARN de Helminto/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
11.
Genetics ; 199(4): 1159-72, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25644702

RESUMEN

The neurotransmitter gamma-aminobutyric acid (GABA) is depolarizing in the developing vertebrate brain, but in older animals switches to hyperpolarizing and becomes the major inhibitory neurotransmitter in adults. We discovered a similar developmental switch in GABA response in Caenorhabditis elegans and have genetically analyzed its mechanism and function in a well-defined circuit. Worm GABA neurons innervate body wall muscles to control locomotion. Activation of GABAA receptors with their agonist muscimol in newly hatched first larval (L1) stage animals excites muscle contraction and thus is depolarizing. At the mid-L1 stage, as the GABAergic neurons rewire onto their mature muscle targets, muscimol shifts to relaxing muscles and thus has switched to hyperpolarizing. This muscimol response switch depends on chloride transporters in the muscles analogous to those that control GABA response in mammalian neurons: the chloride accumulator sodium-potassium-chloride-cotransporter-1 (NKCC-1) is required for the early depolarizing muscimol response, while the two chloride extruders potassium-chloride-cotransporter-2 (KCC-2) and anion-bicarbonate-transporter-1 (ABTS-1) are required for the later hyperpolarizing response. Using mutations that disrupt GABA signaling, we found that neural circuit development still proceeds to completion but with an ∼6-hr delay. Using optogenetic activation of GABAergic neurons, we found that endogenous GABAA signaling in early L1 animals, although presumably depolarizing, does not cause an excitatory response. Thus a developmental depolarizing-to-hyperpolarizing shift is an ancient conserved feature of GABA signaling, but existing theories for why this shift occurs appear inadequate to explain its function upon rigorous genetic analysis of a well-defined neural circuit.


Asunto(s)
Caenorhabditis elegans/metabolismo , Neuronas GABAérgicas/metabolismo , Locomoción , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Agonistas de Receptores de GABA-A/farmacología , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/fisiología , Potenciales de la Membrana , Muscimol/farmacología , Mutación , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Simportadores/genética , Simportadores/metabolismo , Transmisión Sináptica , Cotransportadores de K Cl
12.
Elife ; 2: e00378, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23539368

RESUMEN

The diverse cell types and the precise synaptic connectivity between them are the cardinal features of the nervous system. Little is known about how cell fate diversification is linked to synaptic target choices. Here we investigate how presynaptic neurons select one type of muscles, vm2, as a synaptic target and form synapses on its dendritic spine-like muscle arms. We found that the Notch-Delta pathway was required to distinguish target from non-target muscles. APX-1/Delta acts in surrounding cells including the non-target vm1 to activate LIN-12/Notch in the target vm2. LIN-12 functions cell-autonomously to up-regulate the expression of UNC-40/DCC and MADD-2 in vm2, which in turn function together to promote muscle arm formation and guidance. Ectopic expression of UNC-40/DCC in non-target vm1 muscle is sufficient to induce muscle arm extension from these cells. Therefore, the LIN-12/Notch signaling specifies target selection by selectively up-regulating guidance molecules and forming muscle arms in target cells. DOI:http://dx.doi.org/10.7554/eLife.00378.001.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Moléculas de Adhesión Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Músculos/inervación , Neurogénesis , Receptores Notch/metabolismo , Transducción de Señal , Sinapsis/metabolismo , Vulva/inervación , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Señalización del Calcio , Moléculas de Adhesión Celular/genética , Femenino , Genotipo , Péptidos y Proteínas de Señalización Intracelular/genética , Morfogénesis , Contracción Muscular , Mutación , Oviposición , Comunicación Paracrina , Fenotipo , Receptores Notch/genética , Canales de Sodio/metabolismo
13.
J Neurosci ; 33(2): 761-75, 2013 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-23303953

RESUMEN

Caenorhabditis elegans regulates egg laying by alternating between an inactive phase and a serotonin-triggered active phase. We found that the conserved ERG [ether-a-go-go (EAG) related gene] potassium channel UNC-103 enables this two-state behavior by limiting excitability of the egg-laying muscles. Using both high-speed video recording and calcium imaging of egg-laying muscles in behaving animals, we found that the muscles appear to be excited at a particular phase of each locomotor body bend. During the inactive phase, this rhythmic excitation infrequently evokes calcium transients or contraction of the egg-laying muscles. During the serotonin-triggered active phase, however, these muscles are more excitable and each body bend is accompanied by a calcium transient that drives twitching or full contraction of the egg-laying muscles. We found that ERG-null mutants lay eggs too frequently, and that ERG function is necessary and sufficient in the egg-laying muscles to limit egg laying. ERG K(+) channels localize to postsynaptic sites in the egg-laying muscle, and mutants lacking ERG have more frequent calcium transients and contractions of the egg-laying muscles even during the inactive phase. Thus ERG channels set postsynaptic excitability at a threshold so that further adjustments of excitability by serotonin generate two distinct behavioral states.


Asunto(s)
Conducta Animal/fisiología , Caenorhabditis elegans/fisiología , Canales de Potasio Éter-A-Go-Go/fisiología , Músculos/inervación , Músculos/fisiología , Oviposición/fisiología , Sinapsis/fisiología , Regiones no Traducidas 3'/genética , Animales , Señalización del Calcio/fisiología , ADN/biosíntesis , ADN/genética , Femenino , Microscopía Confocal , Contracción Muscular/fisiología , Dominios PDZ/genética , Reacción en Cadena de la Polimerasa , Serotonina/fisiología , Sinapsis/ultraestructura , Transgenes/genética
14.
Genetics ; 192(4): 1359-71, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23023001

RESUMEN

A better understanding of the molecular mechanisms of signaling by the neurotransmitter serotonin is required to assess the hypothesis that defects in serotonin signaling underlie depression in humans. Caenorhabditis elegans uses serotonin as a neurotransmitter to regulate locomotion, providing a genetic system to analyze serotonin signaling. From large-scale genetic screens we identified 36 mutants of C. elegans in which serotonin fails to have its normal effect of slowing locomotion, and we molecularly identified eight genes affected by 19 of the mutations. Two of the genes encode the serotonin-gated ion channel MOD-1 and the G-protein-coupled serotonin receptor SER-4. mod-1 is expressed in the neurons and muscles that directly control locomotion, while ser-4 is expressed in an almost entirely non-overlapping set of sensory and interneurons. The cells expressing the two receptors are largely not direct postsynaptic targets of serotonergic neurons. We analyzed animals lacking or overexpressing the receptors in various combinations using several assays for serotonin response. We found that the two receptors act in parallel to affect locomotion. Our results show that serotonin functions as an extrasynaptic signal that independently activates multiple receptors at a distance from its release sites and identify at least six additional proteins that appear to act with serotonin receptors to mediate serotonin response.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Canales de Cloruro/metabolismo , Locomoción/fisiología , Serotonina/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/efectos de los fármacos , Proteínas de Caenorhabditis elegans/genética , Canales de Cloruro/genética , Interneuronas/metabolismo , Locomoción/genética , Músculos/metabolismo , Mutación , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Células Receptoras Sensoriales/metabolismo , Neuronas Serotoninérgicas/metabolismo , Serotonina/farmacología
15.
Worm ; 1(1): 56-60, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24058824

RESUMEN

Behavioral responses to food deprivation are a fundamental aspect of nervous system function in all animals. In humans, these behavioral responses prevent dieting from being an effective remedy for obesity. Several signaling molecules in the mammalian brain act through G proteins of the Gαi/o family to mediate responses to food restriction. The mechanisms for neural response to food deprivation may be conserved across species, allowing the power of genetic model organisms to generate insights relevant to the problem of human obesity. In a recent study, we found that C. elegans uses Gαo signaling to mediate a number of behavioral changes that occur after food deprivation. Food deprivation causes biochemical changes in the G Protein Regulator (GPR) domain protein AGS-3 and AGS-3, together with the guanine nucleotide exchange factor RIC-8, activates Gαo signaling to alter food-seeking behavior. These proteins are all conserved in the human brain. Thus the study of behavioral responses to food deprivation in C. elegans may reveal the details of conserved molecular mechanisms underlying neural responses to food deprivation.

16.
J Neurosci ; 31(32): 11553-62, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21832186

RESUMEN

Proteins containing the G protein regulator (GPR) domain bind the major neural G protein Gα(o) in vitro. However, the biological functions of GPR proteins in neurons remain undefined, and based on the in vitro activities of GPR proteins it is unclear whether these proteins activate or inhibit G protein signaling in vivo. We found that the conserved GPR domain protein AGS-3 activates Gα(o) signaling in vivo to allow Caenorhabditis elegans to alter several behaviors after food deprivation, apparently so that the animals can more effectively seek food. AGS-3 undergoes a progressive change in its biochemical fractionation upon food deprivation, suggesting that effects of food deprivation are mediated by modifying this protein. We analyzed one C. elegans food-regulated behavior in depth; AGS-3 activates Gα(o) in the ASH chemosensory neurons to allow food-deprived animals to delay response to the aversive stimulus octanol. Genetic epistasis experiments show the following: (1) AGS-3 and the guanine nucleotide exchange factor RIC-8 act in ASH in a mutually dependent fashion to activate Gα(o); (2) this activation requires interaction of the GPR domains of AGS-3 with Gα(o); and (3) Gα(o)-GTP is ultimately the signaling molecule that acts in ASH to delay octanol response. These results identify a biological role for AGS-3 in response to food deprivation and indicate the mechanism for its activation of Gα(o) signaling in vivo.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Privación de Alimentos/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/fisiología , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Células Cultivadas , Drosophila , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/fisiología , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido , Humanos , Proteínas Nucleares/fisiología , Unión Proteica/genética , Transducción de Señal/genética
17.
EMBO J ; 30(9): 1852-63, 2011 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-21427702

RESUMEN

Chloride influx through GABA-gated Cl(-) channels, the principal mechanism for inhibiting neural activity in the brain, requires a Cl(-) gradient established in part by K(+)-Cl(-) cotransporters (KCCs). We screened for Caenorhabditis elegans mutants defective for inhibitory neurotransmission and identified mutations in ABTS-1, a Na(+)-driven Cl(-)-HCO(3)(-) exchanger that extrudes chloride from cells, like KCC-2, but also alkalinizes them. While animals lacking ABTS-1 or the K(+)-Cl(-) cotransporter KCC-2 display only mild behavioural defects, animals lacking both Cl(-) extruders are paralyzed. This is apparently due to severe disruption of the cellular Cl(-) gradient such that Cl(-) flow through GABA-gated channels is reversed and excites rather than inhibits cells. Neuronal expression of both transporters is upregulated during synapse development, and ABTS-1 expression further increases in KCC-2 mutants, suggesting regulation of these transporters is coordinated to control the cellular Cl(-) gradient. Our results show that Na(+)-driven Cl(-)-HCO(3)(-) exchangers function with KCCs in generating the cellular chloride gradient and suggest a mechanism for the close tie between pH and excitability in the brain.


Asunto(s)
Proteínas de Transporte de Anión/genética , Encéfalo/metabolismo , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Cloruros/metabolismo , Regulación de la Expresión Génica/fisiología , Neuronas/metabolismo , Receptores de GABA-A/metabolismo , Simportadores/genética , Animales , Animales Modificados Genéticamente , Proteínas de Transporte de Anión/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Electrofisiología , Regulación de la Expresión Génica/genética , Concentración de Iones de Hidrógeno , Microscopía , Actividad Motora/genética , Mutación/genética , Oocitos/metabolismo , Plásmidos/genética , Simportadores/metabolismo , Transgenes/genética , Xenopus , Cotransportadores de K Cl
18.
J Biol Chem ; 285(52): 41100-12, 2010 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-20959458

RESUMEN

Regulators of G protein signaling (RGS) proteins of the R7 subfamily limit signaling by neurotransmitters in the brain and by light in the retina. They form obligate complexes with the Gß5 protein that are subject to proteolysis to control their abundance and alter signaling. The mechanisms that regulate this proteolysis, however, remain unclear. We used genetic screens to find mutations in Gß5 that selectively destabilize one of the R7 RGS proteins in Caenorhabditis elegans. These mutations cluster at the binding interface between Gß5 and the N terminus of R7 RGS proteins. Equivalent mutations within mammalian Gß5 allowed the interface to still bind the N-terminal DEP domain of R7 RGS proteins, and mutant Gß5-R7 RGS complexes initially formed in cells but were then rapidly degraded by proteolysis. Molecular dynamics simulations suggest the mutations weaken the Gß5-DEP interface, thus promoting dynamic opening of the complex to expose determinants of proteolysis known to exist on the DEP domain. We propose that conformational rearrangements at the Gß5-DEP interface are key to controlling the stability of R7 RGS protein complexes.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/química , Simulación por Computador , Subunidades beta de la Proteína de Unión al GTP/química , Modelos Moleculares , Proteínas RGS/química , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Células HEK293 , Humanos , Complejos Multiproteicos , Mutación , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas RGS/genética , Proteínas RGS/metabolismo
19.
Mol Biol Cell ; 21(2): 232-43, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19923320

RESUMEN

Regulator of G protein signaling (RGS) proteins inhibit G protein signaling by activating Galpha GTPase activity, but the mechanisms that regulate RGS activity are not well understood. The mammalian R7 binding protein (R7BP) can interact with all members of the R7 family of RGS proteins, and palmitoylation of R7BP can target R7 RGS proteins to the plasma membrane in cultured cells. However, whether endogenous R7 RGS proteins in neurons require R7BP or membrane localization for function remains unclear. We have identified and knocked out the only apparent R7BP homolog in Caenorhabditis elegans, RSBP-1. Genetic studies show that loss of RSBP-1 phenocopies loss of the R7 RGS protein EAT-16, but does not disrupt function of the related R7 RGS protein EGL-10. Biochemical analyses find that EAT-16 coimmunoprecipitates with RSBP-1 and is predominantly plasma membrane-associated, whereas EGL-10 does not coimmunoprecipitate with RSBP-1 and is not predominantly membrane-associated. Mutating the conserved membrane-targeting sequence in RSBP-1 disrupts both the membrane association and function of EAT-16, demonstrating that membrane targeting by RSBP-1 is essential for EAT-16 activity. Our analysis of endogenous R7 RGS proteins in C. elegans neurons reveals key differences in the functional requirements for membrane targeting between members of this protein family.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Reguladores de Proteínas de Unión al GTP/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas RGS/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Inmunoprecipitación , Locomoción , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Músculos/metabolismo , Mutación/genética , Sistema Nervioso/metabolismo , Ovulación , Transporte de Proteínas , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/metabolismo , Transgenes/genética
20.
J Neurosci ; 29(32): 9943-54, 2009 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-19675228

RESUMEN

Chloride influx through GABA-gated chloride channels, the primary mechanism by which neural activity is inhibited in the adult mammalian brain, depends on chloride gradients established by the potassium chloride cotransporter KCC2. We used a genetic screen to identify genes important for inhibition of the hermaphrodite-specific motor neurons (HSNs) that stimulate Caenorhabditis elegans egg-laying behavior and discovered mutations in a potassium chloride cotransporter, kcc-2. Functional analysis indicates that, like mammalian KCCs, C. elegans KCC-2 transports chloride, is activated by hypotonic conditions, and is inhibited by the loop diuretic furosemide. KCC-2 appears to establish chloride gradients required for the inhibitory effects of GABA-gated and serotonin-gated chloride channels on C. elegans behavior. In the absence of KCC-2, chloride gradients appear to be altered in neurons and muscles such that normally inhibitory signals become excitatory. kcc-2 is transcriptionally upregulated in the HSN neurons during synapse development. Loss of KCC-2 produces a decrease in the synaptic vesicle population within mature HSN synapses, which apparently compensates for a lack of HSN inhibition, resulting in normal egg-laying behavior. Thus, KCC-2 coordinates the development of inhibitory neurotransmission with synapse maturation to produce mature neural circuits with appropriate activity levels.


Asunto(s)
Caenorhabditis elegans/fisiología , Simportadores/metabolismo , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Cloruros/metabolismo , Furosemida/farmacología , Soluciones Hipotónicas , Neuronas Motoras/fisiología , Músculos/fisiología , Mutación , Receptores Acoplados a Proteínas G/metabolismo , Homología de Secuencia , Conducta Sexual Animal/fisiología , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Simportadores/antagonistas & inhibidores , Simportadores/genética , Vesículas Sinápticas/fisiología , Regulación hacia Arriba , Cotransportadores de K Cl
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...