Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mult Scler J Exp Transl Clin ; 10(2): 20552173241240937, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715892

RESUMEN

Background: Cognitive dysfunction is a known symptom of multiple sclerosis (MS), with memory recognized as a frequently impacted domain. Here, we used high-resolution MRI at 7 tesla to build on cross-sectional work by evaluating the longitudinal relationship of diffusion tensor imaging (DTI) measures of the fornix to episodic memory performance. Methods: A sample of 80 people with multiple sclerosis (mean age 51.9 ± 8.1 years; 24% male) underwent baseline clinical evaluation, neuropsychological assessment, and MRI. Sixty-four participants had follow-up neuropsychological testing after 1-2 years. Linear regression was used to assess the relationship of baseline imaging measures to follow-up episodic memory performance, measured using the Selective Reminding Test and Brief Visuospatial Memory Test. A reduced prediction model included cognitive function at baseline, age, sex, and disease course. Results: Radial (ß = -0.222, p < 0.026; likelihood ratio test (LRT) p < 0.018), axial (ß = -0.270, p < 0.005; LRT p < 0.003), and mean (ß = -0.242, p < 0.0139; LRT p < 0.009) diffusivity of the fornix significantly added to the model, with follow-up analysis indicating that a longer prediction interval may increase accuracy. Conclusion: These results suggest that fornix DTI has predictive value specific to memory function in MS and warrants additional investigation in the drive to develop predictors of disease progression.

2.
Magn Reson Imaging ; 109: 221-226, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38521367

RESUMEN

BACKGROUND AND PURPOSE: A substantial fraction of those who had Alzheimer's Disease (AD) pathology on autopsy did not have dementia in life. While biomarkers for AD pathology are well-developed, biomarkers specific to cognitive domains affected by early AD are lagging. Diffusion MRI (dMRI) of the fornix is a candidate biomarker for early AD-related cognitive changes but is susceptible to bias due to partial volume averaging (PVA) with cerebrospinal fluid. The purpose of this work is to leverage multi-shell dMRI to correct for PVA and to evaluate PVA-corrected dMRI measures in fornix as a biomarker for cognition in AD. METHODS: Thirty-three participants in the Cleveland Alzheimer's Disease Research Center (CADRC) (19 with normal cognition (NC), 10 with mild cognitive impairment (MCI), 4 with dementia due to AD) were enrolled in this study. Multi-shell dMRI was acquired, and voxelwise fits were performed with two models: 1) diffusion tensor imaging (DTI) that was corrected for PVA and 2) neurite orientation dispersion and density imaging (NODDI). Values of tissue integrity in fornix were correlated with neuropsychological scores taken from the Uniform Data Set (UDS), including the UDS Global Composite 5 score (UDSGC5). RESULTS: Statistically significant correlations were found between the UDSGC5 and PVA-corrected measure of mean diffusivity (MDc, r = -0.35, p < 0.05) from DTI and the intracelluar volume fraction (ficvf, r = 0.37, p < 0.04) from NODDI. A sensitivity analysis showed that the relationship to MDc was driven by episodic memory, which is often affected early in AD, and language. CONCLUSION: This cross-sectional study suggests that multi-shell dMRI of the fornix that has been corrected for PVA is a potential biomarker for early cognitive domain changes in AD. A longitudinal study will be necessary to determine if the imaging measure can predict cognitive decline.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Imagen de Difusión Tensora/métodos , Estudios Longitudinales , Estudios Transversales , Cognición , Imagen de Difusión por Resonancia Magnética , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Biomarcadores
3.
Magn Reson Med ; 91(4): 1556-1566, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38073070

RESUMEN

PURPOSE: To demonstrate the feasibility of motion compensating diffusion gradient schemes in the acquisition of quality diffusion tensor images (DTI) of the brain during continuous gross head motion. METHODS: Five healthy subjects were scanned using a clinical 3 T MRI with and without continuous head motion. For one volunteer, DTI data was acquired using standard (M0) diffusion-weighted (DW) gradients, and first (M1) and second (M2) order gradient schemes that were previously developed for use in cardiac DTI. In four additional volunteers, DTI data was acquired with M0 and M2 gradients. DTI parameters were calculated and compared with established retrospective motion corrections. RESULTS: In the absence of motion, DTI parameters calculated from M0, M1, and M2 data were consistent. In the presence of motion, up to 44% of DW images acquired with M0 gradients were corrupted by signal dropout, compared to 0% of the M2 images. In voxelwise comparisons, DTI parameters calculated using motion-M0 data were elevated compared to reference data. Retrospective corrections for extreme motion applied to motion-M0 data did not improve consistency with reference data in cases where motion corrupted >15% of DW images. In contrast, DTI parameters calculated with motion-M2 data were consistent with reference data. CONCLUSION: This proof-of-principle study demonstrates that motion compensating diffusion gradients can mitigate artifacts because of continuous motion in DTI of the brain and offers promise for improved DTI accessibility. Further study will be necessary to determine the robustness of the approach in patient populations with high susceptibility to head motion.


Asunto(s)
Encéfalo , Imagen de Difusión Tensora , Humanos , Imagen de Difusión Tensora/métodos , Estudios Retrospectivos , Encéfalo/diagnóstico por imagen , Movimiento (Física) , Imagen por Resonancia Magnética , Imagen de Difusión por Resonancia Magnética/métodos
4.
Neuroimage ; 254: 119136, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35346840

RESUMEN

Hemodynamic cardiac and respiratory-cycle fluctuations are a source of unwanted non-neuronal signal components, often called physiologic noise, in resting state (rs-) fMRI studies. Here, we use image-based retrospective correction of physiological motion (RETROICOR) with externally measured physiologic signals to investigate cardiac and respiratory hemodynamic phase functions reflected in rs-fMRI data. We find that the cardiac phase function is time shifted locally, while the respiratory phase function is described as single, fixed phase form across the brain. In light of these findings, we propose an update to Physiologic EStimation by Temporal ICA (PESTICA), our publically available software package that estimates physiologic signals when external physiologic measures are not available. This update incorporates: 1) auto-selection of slicewise physiologic regressors and generation of physiologic fixed phase regressors with total slices/TR sampling rate, 2) Fourier series expansion of the cardiac fixed phase regressor to account for time delayed cardiac noise 3) removal of cardiac and respiratory noise in imaging data. We compare the efficacy of the updated method to RETROICOR.


Asunto(s)
Artefactos , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Estudios Retrospectivos
5.
PLoS One ; 16(6): e0251338, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34101741

RESUMEN

Cognitive impairment is a common symptom in individuals with Multiple Sclerosis (MS), but meaningful, reliable biomarkers relating to cognitive decline have been elusive, making evaluation of the impact of therapeutics on cognitive function difficult. Here, we combine pathway-based MRI measures of structural and functional connectivity to construct a metric of functional decline in MS. The Structural and Functional Connectivity Index (SFCI) is proposed as a simple, z-scored metric of structural and functional connectivity, where changes in the metric have a simple statistical interpretation and may be suitable for use in clinical trials. Using data collected at six time points from a 2-year longitudinal study of 20 participants with MS and 9 age- and sex-matched healthy controls, we probe two common symptomatic domains, motor and cognitive function, by measuring structural and functional connectivity in the transcallosal motor pathway and posterior cingulum bundle. The SFCI is significantly lower in participants with MS compared to controls (p = 0.009) and shows a significant decrease over time in MS (p = 0.012). The change in SFCI over two years performed favorably compared to measures of brain parenchymal fraction and lesion volume, relating to follow-up measures of processing speed (r = 0.60, p = 0.005), verbal fluency (r = 0.57, p = 0.009), and score on the Multiple Sclerosis Functional Composite (r = 0.67, p = 0.003). These initial results show that the SFCI is a suitable metric for longitudinal evaluation of functional decline in MS.


Asunto(s)
Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Esclerosis Múltiple/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Neuroimagen/métodos , Sustancia Blanca/diagnóstico por imagen , Adulto , Encéfalo/patología , Disfunción Cognitiva/patología , Conectoma , Progresión de la Enfermedad , Femenino , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/patología , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/patología , Red Nerviosa/patología , Pruebas Neuropsicológicas , Sustancia Blanca/patología
6.
Brain Commun ; 3(2): fcab088, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33977271

RESUMEN

Down syndrome is the phenotypic consequence of trisomy 21, with clinical presentation including both neurodevelopmental and neurodegenerative components. Although the intellectual disability typically displayed by individuals with Down syndrome is generally global, it also involves disproportionate deficits in hippocampally-mediated cognitive processes. Hippocampal dysfunction may also relate to Alzheimer's disease-type pathology, which can appear in as early as the first decade of life and becomes universal by age 40. Using 7-tesla MRI of the brain, we present an assessment of the structure and function of the hippocampus in 34 individuals with Down syndrome (mean age 24.5 years ± 6.5) and 27 age- and sex-matched typically developing healthy controls. In addition to increased whole-brain mean cortical thickness and lateral ventricle volumes (P < 1.0 × 10-4), individuals with Down syndrome showed selective volume reductions in bilateral hippocampal subfields cornu Ammonis field 1, dentate gyrus, and tail (P < 0.005). In the group with Down syndrome, bilateral hippocampi showed widespread reductions in the strength of functional connectivity, predominately to frontal regions (P < 0.02). Age was not related to hippocampal volumes or functional connectivity measures in either group, but both groups showed similar relationships of age to whole-brain volume measures (P < 0.05). Finally, we performed an exploratory analysis of a subgroup of individuals with Down syndrome with both imaging and neuropsychological assessments. This analysis indicated that measures of spatial memory were related to mean cortical thickness, total grey matter volume and right hemisphere hippocampal subfield volumes (P < 0.02). This work provides a first demonstration of the usefulness of high-field MRI to detect subtle differences in structure and function of the hippocampus in individuals with Down syndrome, and suggests the potential for development of MRI-derived measures as surrogate markers of drug efficacy in pharmacological studies designed to investigate enhancement of cognitive function.

7.
Brain Imaging Behav ; 15(4): 2051-2060, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33070299

RESUMEN

Studies of resting-state functional connectivity MRI in Alzheimer's disease suggest that disease stage plays a role in functional changes of the default mode network. Individuals with the genetic disorder Down syndrome show an increased incidence of early-onset Alzheimer's-type dementia, along with early and nearly universal neuropathologic changes of Alzheimer's disease. The present study examined high-resolution functional connectivity of the default mode network in 11 young adults with Down syndrome that showed no measurable symptoms of dementia and 11 age- and sex-matched neurotypical controls. We focused on within-network connectivity of the default mode network, measured from both anterior and posterior aspects of the cingulate cortex. Sixty-eight percent of connections to the posterior cingulate and 26% to the anterior cingulate showed reduced strength in the group with Down syndrome (p < 0.01). The Down syndrome group showed increased connectivity strength from the anterior cingulate to the bilateral inferior frontal gyri and right putamen (p < 0.005). In an exploratory analysis, connectivity in the group with Down syndrome showed regional relationships to plasma measures of inflammatory markers and t-tau. In non-demented adults with Down syndrome, functional connectivity within the default mode network may be analogous to changes reported in preclinical Alzheimer's disease, and warrants further investigation as a measure of dementia risk.


Asunto(s)
Enfermedad de Alzheimer , Síndrome de Down , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Red en Modo Predeterminado , Síndrome de Down/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Adulto Joven
8.
J Immunol ; 204(5): 1111-1118, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31959733

RESUMEN

Individuals with Down syndrome (DS) develop Alzheimer's disease (AD)-related neuropathology, characterized by amyloid plaques with amyloid ß (Aß) and neurofibrillary tangles with tau accumulation. Peripheral inflammation and the innate immune response are elevated in DS. Triggering receptor expressed in myeloid cells 2 (TREM2) genetic variants are risk factors for AD and other neurodegenerative diseases. Soluble TREM2 (sTREM2), a soluble cleavage product of TREM2, is elevated in AD cerebrospinal fluid and positively correlates with cognitive decline. There is relatively little information about TREM2 in DS. Our objective was to examine the relationship between sTREM2 and inflammatory markers in young adults with DS, prior to the development of dementia symptoms. Because TREM2 plays a role in the innate immune response and has been associated with dementia, the hypothesis of this exploratory study was that young adults with DS predementia (n = 15, mean age = 29.5 y) would exhibit a different relationship between sTREM2 and inflammatory markers in plasma, compared with neurotypical, age-matched controls (n = 16, mean age = 29.6 y). Indeed, young adults with DS had significantly elevated plasma sTREM2 and inflammatory markers. Additionally, in young adults with DS, sTREM2 correlated positively with 24 of the measured cytokines, whereas there were no significant correlations in the control group. Hierarchical clustering of sTREM2 and cytokine concentrations also differed between the groups, supporting the hypothesis that its function is altered in people with DS predementia. This preliminary report of human plasma provides a basis for future studies investigating the relationship between TREM2 and the broader immune response predementia.


Asunto(s)
Síndrome de Down/inmunología , Mediadores de Inflamación/inmunología , Glicoproteínas de Membrana/inmunología , Receptores Inmunológicos/inmunología , Adulto , Biomarcadores/sangre , Citocinas/sangre , Citocinas/inmunología , Síndrome de Down/sangre , Femenino , Humanos , Mediadores de Inflamación/sangre , Masculino , Glicoproteínas de Membrana/sangre , Receptores Inmunológicos/sangre
9.
Mult Scler ; 25(4): 574-584, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29512427

RESUMEN

BACKGROUND: Episodic memory loss is one of the most common cognitive symptoms in patients with multiple sclerosis (MS), but the pathophysiology of this symptom remains unclear. Both the hippocampus and thalamus have been implicated in episodic memory and show regional atrophy in patients with MS. OBJECTIVE: In this work, we used functional magnetic resonance imaging (fMRI) during a verbal episodic memory task, lesion load, and volumetric measures of the hippocampus and thalamus to assess the relative contributions to verbal and visual-spatial episodic memory. METHODS: Functional activation, lesion load, and volumetric measures from 32 patients with MS and 16 healthy controls were used in a predictive analysis of episodic memory function. RESULTS: After adjusting for disease duration, immediate recall performance on a visual-spatial episodic memory task was significantly predicted by hippocampal volume ( p < 0.003). Delayed recall on the same task was significantly predicted by volume of the left thalamus ( p < 0.003). For both memory measures, functional activation of the thalamus during encoding was more predictive than that of volume measures ( p < 0.002). CONCLUSION: Our results suggest that functional activation may be useful as a predictive measure of episodic memory loss in patients with MS.


Asunto(s)
Disfunción Cognitiva , Hipocampo , Trastornos de la Memoria , Memoria Episódica , Esclerosis Múltiple , Tálamo , Adulto , Atrofia/patología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Femenino , Neuroimagen Funcional , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Hipocampo/fisiopatología , Humanos , Imagen por Resonancia Magnética , Masculino , Trastornos de la Memoria/diagnóstico por imagen , Trastornos de la Memoria/etiología , Trastornos de la Memoria/patología , Trastornos de la Memoria/fisiopatología , Recuerdo Mental/fisiología , Persona de Mediana Edad , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Esclerosis Múltiple/fisiopatología , Reconocimiento Visual de Modelos/fisiología , Memoria Espacial/fisiología , Tálamo/diagnóstico por imagen , Tálamo/patología , Tálamo/fisiopatología , Aprendizaje Verbal/fisiología
10.
Brain Sci ; 8(12)2018 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-30486228

RESUMEN

Down syndrome (DS) is the most common genetically-defined cause of intellectual disability. Neurodevelopmental deficits displayed by individuals with DS are generally global, however, disproportionate deficits in cognitive processes that depend heavily on the hippocampus and prefrontal cortex are also well documented. Additionally, DS is associated with relative strengths in visual processing and visuospatial short-term memory, and weaknesses in the verbal domain. Although reports of pharmacological rescuing of learning and memory deficits in mouse models of DS abound in the literature, proving the principle that cognitive ability of persons with DS can be boosted through pharmacological means is still an elusive goal. The design of customized batteries of neuropsychological efficacy outcome measures is essential for the successful implementation of clinical trials of potential cognitive enhancing strategies. Here, we review the neurocognitive phenotype of individuals with DS and major broad-based test batteries designed to quantify specific cognitive domains in these individuals, including the one used in a pilot trial of the drug memantine. The main goal is to illustrate the essential considerations in planning trials to enhance cognitive functions in individuals with DS, which should also have implications for the design of similar studies in individuals with other forms of intellectual disability.

11.
Mov Disord ; 31(11): 1664-1675, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27620011

RESUMEN

OBJECTIVES: Diffusivity in white-matter tracts is abnormal throughout the brain in cross-sectional studies of prodromal Huntington's disease. To date, longitudinal changes have not been observed. The present study investigated cross-sectional and longitudinal changes in white-matter diffusivity in relationship to the phase of prodromal Huntington's progression, and compared them with changes in brain volumes and clinical variables that track disease progression. METHODS: Diffusion MRI profiles were studied for 2 years in 37 gene-negative controls and 64 prodromal Huntington's disease participants in varied phases of disease progression. To estimate the relative importance of diffusivity metrics in the prodromal phase, group effects were rank ordered relative to those obtained from analyses of brain volumes, motor, cognitive, and sensory variables. RESULTS: First, at baseline diffusivity was abnormal throughout all tracts, especially as individuals approached a manifest Huntington's disease diagnosis. Baseline diffusivity metrics in 6 tracts and basal ganglia volumes best distinguished among the groups. Second, group differences in longitudinal change in diffusivity were localized to the superior fronto-occipital fasciculus, most prominently in individuals closer to a diagnosis. Group differences were also observed in longitudinal changes of most brain volumes, but not clinical variables. Last, increases in motor symptoms across time were associated with greater changes in the superior fronto-occipital fasciculus diffusivity and corpus callosum, cerebrospinal fluid, and lateral ventricle volumes. CONCLUSIONS: These novel findings provide new insights into changes within 2 years in different facets of brain structure and their clinical relevance to changes in symptomatology that is decisive for a manifest Huntington's diagnosis. © 2016 International Parkinson and Movement Disorder Society.


Asunto(s)
Ganglios Basales/diagnóstico por imagen , Progresión de la Enfermedad , Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/fisiopatología , Síntomas Prodrómicos , Sustancia Blanca/diagnóstico por imagen , Adulto , Estudios Transversales , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad
12.
Mult Scler ; 21(14): 1794-801, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26106010

RESUMEN

BACKGROUND: Imaging can provide noninvasive neural markers of disease progression in multiple sclerosis (MS) that are related to behavioral and cognitive symptoms. Past work suggests that diffusion tensor imaging (DTI) provides a measure of white matter pathology, including demyelination and axonal counts. OBJECTIVES: In the current study, the authors investigate the relationship of DTI measures in the cingulum bundle to common deficits in MS, including episodic memory, working memory, and information processing speed. METHODS: Fifty-seven patients with MS and 17 age- and education-matched controls underwent high-spatial resolution diffusion scans and cognitive testing. Probabilistic tracking was used to generate tracks from the posterior cingulate cortex to the entorhinal cortex. RESULTS: Radial and axial diffusivity values were significantly different between patients and controls (p < 0.031), and in patients bilateral diffusion measures were significantly related to measures of episodic memory and speed of processing (p < 0.033). CONCLUSIONS: The tractography-based measures of posterior cingulum integrity reported here support further development of DTI as a viable measure of axonal integrity and cognitive function in patients with MS.


Asunto(s)
Trastornos del Conocimiento/fisiopatología , Imagen de Difusión Tensora/métodos , Esclerosis Múltiple/patología , Sustancia Blanca/patología , Adulto , Trastornos del Conocimiento/etiología , Progresión de la Enfermedad , Femenino , Giro del Cíngulo/patología , Humanos , Masculino , Memoria Episódica , Memoria a Corto Plazo/fisiología , Persona de Mediana Edad , Esclerosis Múltiple/complicaciones , Vías Nerviosas/patología , Desempeño Psicomotor/fisiología
13.
Neuroimage Clin ; 8: 543-53, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26110112

RESUMEN

Mild to moderate traumatic brain injury (TBI) due to blast exposure is frequently diagnosed in veterans returning from the wars in Iraq and Afghanistan. However, it is unclear whether neural damage resulting from blast TBI differs from that found in TBI due to blunt-force trauma (e.g., falls and motor vehicle crashes). Little is also known about the effects of blast TBI on neural networks, particularly over the long term. Because impairment in working memory has been linked to blunt-force TBI, the present functional magnetic resonance imaging (fMRI) study sought to investigate whether brain activation in response to a working memory task would discriminate blunt-force from blast TBI. Twenty-five veterans (mean age = 29.8 years, standard deviation = 6.01 years, 1 female) who incurred TBI due to blast an average of 4.2 years prior to enrollment and 25 civilians (mean age = 27.4 years, standard deviation = 6.68 years, 4 females) with TBI due to blunt-force trauma performed the Sternberg Item Recognition Task while undergoing fMRI. The task involved encoding 1, 3, or 5 items in working memory. A group of 25 veterans (mean age = 29.9 years, standard deviation = 5.53 years, 0 females) and a group of 25 civilians (mean age = 27.3 years, standard deviation = 5.81 years, 0 females) without history of TBI underwent identical imaging procedures and served as controls. Results indicated that the civilian TBI group and both control groups demonstrated a monotonic relationship between working memory set size and activation in the right caudate during encoding, whereas the blast TBI group did not (p < 0.05, corrected for multiple comparisons using False Discovery Rate). Blast TBI was also associated with worse performance on the Sternberg Item Recognition Task relative to the other groups, although no other group differences were found on neuropsychological measures of episodic memory, inhibition, and general processing speed. These results could not be attributed to caudate atrophy or the presence of PTSD symptoms. Our results point to a specific vulnerability of the caudate to blast injury. Changes in activation during the Sternberg Item Recognition Task, and potentially other tasks that recruit the caudate, may serve as biomarkers for blast TBI.


Asunto(s)
Traumatismos por Explosión/fisiopatología , Lesión Encefálica Crónica/fisiopatología , Núcleo Caudado/fisiopatología , Imagen por Resonancia Magnética/métodos , Trastornos de la Memoria/fisiopatología , Memoria a Corto Plazo/fisiología , Adulto , Campaña Afgana 2001- , Traumatismos por Explosión/complicaciones , Lesión Encefálica Crónica/complicaciones , Femenino , Humanos , Guerra de Irak 2003-2011 , Masculino , Trastornos de la Memoria/etiología , Veteranos , Adulto Joven
14.
Brain ; 138(Pt 8): 2332-46, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26059655

RESUMEN

Cognitive, motor and psychiatric changes in prodromal Huntington's disease have nurtured the emergent need for early interventions. Preventive clinical trials for Huntington's disease, however, are limited by a shortage of suitable measures that could serve as surrogate outcomes. Measures of intrinsic functional connectivity from resting-state functional magnetic resonance imaging are of keen interest. Yet recent studies suggest circumscribed abnormalities in resting-state functional magnetic resonance imaging connectivity in prodromal Huntington's disease, despite the spectrum of behavioural changes preceding a manifest diagnosis. The present study used two complementary analytical approaches to examine whole-brain resting-state functional magnetic resonance imaging connectivity in prodromal Huntington's disease. Network topology was studied using graph theory and simple functional connectivity amongst brain regions was explored using the network-based statistic. Participants consisted of gene-negative controls (n = 16) and prodromal Huntington's disease individuals (n = 48) with various stages of disease progression to examine the influence of disease burden on intrinsic connectivity. Graph theory analyses showed that global network interconnectivity approximated a random network topology as proximity to diagnosis neared and this was associated with decreased connectivity amongst highly-connected rich-club network hubs, which integrate processing from diverse brain regions. However, functional segregation within the global network (average clustering) was preserved. Functional segregation was also largely maintained at the local level, except for the notable decrease in the diversity of anterior insula intermodular-interconnections (participation coefficient), irrespective of disease burden. In contrast, network-based statistic analyses revealed patterns of weakened frontostriatal connections and strengthened frontal-posterior connections that evolved as disease burden increased. These disturbances were often related to long-range connections involving peripheral nodes and interhemispheric connections. A strong association was found between weaker connectivity and decreased rich-club organization, indicating that whole-brain simple connectivity partially expressed disturbances in the communication of highly-connected hubs. However, network topology and network-based statistic connectivity metrics did not correlate with key markers of executive dysfunction (Stroop Test, Trail Making Test) in prodromal Huntington's disease, which instead were related to whole-brain connectivity disturbances in nodes (right inferior parietal, right thalamus, left anterior cingulate) that exhibited multiple aberrant connections and that mediate executive control. Altogether, our results show for the first time a largely disease burden-dependent functional reorganization of whole-brain networks in prodromal Huntington's disease. Both analytic approaches provided a unique window into brain reorganization that was not related to brain atrophy or motor symptoms. Longitudinal studies currently in progress will chart the course of functional changes to determine the most sensitive markers of disease progression.


Asunto(s)
Mapeo Encefálico , Encéfalo/patología , Enfermedad de Huntington/patología , Enfermedad de Huntington/fisiopatología , Red Nerviosa/metabolismo , Adulto , Anciano , Encéfalo/fisiopatología , Función Ejecutiva/fisiología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Red Nerviosa/fisiopatología , Pruebas Neuropsicológicas
15.
Brain Connect ; 4(7): 558-65, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25117651

RESUMEN

This work presents a pathway-dependent anatomic and functional connectivity analysis in 19 patients with relapse-remitting multiple sclerosis (MS) and 16 age-, education-, and gender-matched controls. An MS population is used in this study as a model for anatomic connectivity, permitting us to observe relationships between anatomic and functional connectivity more easily. A combined resting-state functional magnetic resonance imaging (fMRI) and whole-brain, high angular resolution diffusion imaging analysis is performed in three independent, monosynaptic pathways. The pathways chosen were transcallosal pathway connecting the bilateral primary sensorimotor regions, right and left posterior portion of the Papez circuit, connecting the posterior cingulate cortex and hippocampus. The Papez circuit is known to be involved in memory function, one of the most frequently impacted cognitive domains in patients with MS. We show that anatomic connectivity, as measured with diffusion-weighted imaging, and functional connectivity, as measured with resting-state fMRI, are significantly reduced in patients as compared with controls for at least some of the pathways considered. In addition when all pathway measures are combined, anatomic and functional connectivity are significantly correlated in patients with MS as well as healthy controls. We suggest that anatomic and functional connectivity are related for monosynaptic pathways and that radial diffusivity, as a diffusion-tensor-based measure of white matter integrity, is a robust measure of anatomic connectivity in the general population.


Asunto(s)
Encéfalo/patología , Encéfalo/fisiopatología , Esclerosis Múltiple Recurrente-Remitente/patología , Esclerosis Múltiple Recurrente-Remitente/fisiopatología , Adulto , Mapeo Encefálico , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiopatología
16.
Brain Connect ; 4(7): 535-46, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25072408

RESUMEN

Subtle changes in motor function have been observed in individuals with prodromal Huntington disease (prHD), but the underlying neural mechanisms are not well understood nor is the cumulative effect of the disease (disease burden) on functional connectivity. The present study examined the resting-state functional magnetic resonance imaging (rs-fMRI) connectivity of the primary motor cortex (M1) in 16 gene-negative (NEG) controls and 48 gene-positive prHD participants with various levels of disease burden. The results showed that the strength of the left M1 connectivity with the ipsilateral M1 and somatosensory areas decreased as disease burden increased and correlated with motor symptoms. Weakened M1 connectivity within the motor areas was also associated with abnormalities in long-range connections that evolved with disease burden. In this study, M1 connectivity was decreased with visual centers (bilateral cuneus), but increased with a hub of the default mode network (DMN; posterior cingulate cortex). Changes in connectivity measures were associated with worse performance on measures of cognitive-motor functioning. Short- and long-range functional connectivity disturbances were also associated with volume loss in the basal ganglia, suggesting that weakened M1 connectivity is partly a manifestation of striatal atrophy. Altogether, the results indicate that the prodromal phase of HD is associated with abnormal interhemispheric interactions among motor areas and disturbances in the connectivity of M1 with visual centers and the DMN. These changes may, respectively, contribute to increased motor symptoms, visuomotor integration problems, and deficits in the executive control of movement as individuals approach a manifest diagnosis.


Asunto(s)
Enfermedad de Huntington/genética , Enfermedad de Huntington/fisiopatología , Corteza Motora/fisiopatología , Red Nerviosa/fisiopatología , Adulto , Encéfalo/fisiopatología , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Síntomas Prodrómicos , Corteza Somatosensorial/fisiopatología
17.
Cortex ; 58: 72-85, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24959703

RESUMEN

Cognitive changes in the prodromal phase of Huntington disease (prHD) are found in multiple domains, yet their neural bases are not well understood. One component process that supports cognition is inhibitory control. In the present fMRI study, we examined brain circuits involved in response inhibition in 65 prHD participants and 36 gene-negative (NEG) controls using the stop signal task (SST). PrHD participants were subdivided into three groups (LOW, MEDIUM, HIGH) based on their CAG-Age Product (CAP) score, an index of genetic exposure and a proxy for expected time to diagnosis. Poorer response inhibition (stop signal duration) correlated with CAP scores. When response inhibition was successful, activation of the classic frontal inhibitory-network was normal in prHD, yet stepwise reductions in activation with proximity to diagnosis were found in the posterior ventral attention network (inferior parietal and temporal cortices). Failures in response inhibition in prHD were related to changes in inhibition centers (supplementary motor area (SMA)/anterior cingulate and inferior frontal cortex/insula) and ventral attention networks, where activation decreased with proximity to diagnosis. The LOW group showed evidence of early compensatory activation (hyperactivation) of right-hemisphere inhibition and attention reorienting centers, despite an absence of cortical atrophy or deficits on tests of executive functioning. Moreover, greater activation for failed than successful inhibitions in an ipsilateral motor-control network was found in the control group, whereas such differences were markedly attenuated in all prHD groups. The results were not related to changes in cortical volume and thickness, which did not differ among the groups. However, greater hypoactivation of classic right-hemisphere inhibition centers [inferior frontal gyrus (IFG)/insula, SMA/anterior cingulate cortex (ACC)] during inhibition failures correlated with greater globus pallidus atrophy. These results are the first to demonstrate that response inhibition in prHD is associated with altered functioning in brain networks that govern inhibition, attention, and motor control.


Asunto(s)
Encéfalo/fisiopatología , Función Ejecutiva/fisiología , Enfermedad de Huntington/fisiopatología , Inhibición Psicológica , Red Nerviosa/fisiopatología , Adulto , Anciano , Atención/fisiología , Mapeo Encefálico , Cognición/fisiología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Desempeño Psicomotor/fisiología , Adulto Joven
18.
Magn Reson Imaging ; 32(4): 354-8, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24512796

RESUMEN

PURPOSE: To assess for associations between hippocampal atrophy and measures of cognitive function, hippocampal magnetization transfer ratio (MTR), and diffusion measures of the fornix, the largest efferent white matter tract from the hippocampus, in patients with multiple sclerosis (MS) and controls. MATERIALS AND METHODS: A total of 53 patients with MS and 20 age- and sex-matched healthy controls participated in cognitive testing and scanning including high spatial-resolution diffusion imaging and a T1-MPRAGE scan. Hippocampal volume and fornicial thickness measures were calculated and compared to mean values of fornicial transverse diffusivity, mean diffusivity, longitudinal diffusivity, fractional anisotropy, mean hippocampal MTR, and scores on measures of episodic memory, processing speed, and working memory tasks. RESULTS: In patients with MS, hippocampal volume was significantly related to fornicial diffusion measures (P<7×10(-4)) and to measures of verbal (P=0.030) and visual spatial (P=0.004) episodic memory and a measure of information processing speed (P<0.037). DISCUSSION: These results highlight the role of the hippocampus in cognitive dysfunction in patients with MS and suggest that measures of hippocampal atrophy could be used to capture aspects of disease progression.


Asunto(s)
Trastornos del Conocimiento/patología , Imagen de Difusión Tensora/métodos , Fórnix/patología , Hipocampo/patología , Esclerosis Múltiple/complicaciones , Adulto , Atrofia/patología , Trastornos del Conocimiento/etiología , Femenino , Humanos , Masculino , Esclerosis Múltiple/patología , Tamaño de los Órganos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
19.
J Neurotrauma ; 31(2): 169-79, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24020449

RESUMEN

Military personnel involved in Operations Enduring Freedom and Iraqi Freedom (OEF/OIF) commonly experience blast-induced mild to moderate traumatic brain injury (TBI). In this study, we used task-activated functional MRI (fMRI) to determine if blast-related TBI has a differential impact on brain activation in comparison with TBI caused primarily by mechanical forces in civilian settings. Four groups participated: (1) blast-related military TBI (milTBI; n=21); (2) military controls (milCON; n=22); (3) non-blast civilian TBI (civTBI; n=21); and (4) civilian controls (civCON; n=23) with orthopedic injuries. Mild to moderate TBI (MTBI) occurred 1 to 6 years before enrollment. Participants completed the Stop Signal Task (SST), a measure of inhibitory control, while undergoing fMRI. Brain activation was evaluated with 2 (mil, civ)×2 (TBI, CON) analyses of variance, corrected for multiple comparisons. During correct inhibitions, fMRI activation was lower in the TBI than CON subjects in regions commonly associated with inhibitory control and the default mode network. In contrast, inhibitory failures showed significant interaction effects in the bilateral inferior temporal, left superior temporal, caudate, and cerebellar regions. Specifically, the milTBI group demonstrated more activation than the milCON group when failing to inhibit; in contrast, the civTBI group exhibited less activation than the civCON group. Covariance analyses controlling for the effects of education and self-reported psychological symptoms did not alter the brain activation findings. These results indicate that the chronic effects of TBI are associated with abnormal brain activation during successful response inhibition. During failed inhibition, the pattern of activation distinguished military from civilian TBI, suggesting that blast-related TBI has a unique effect on brain function that can be distinguished from TBI resulting from mechanical forces associated with sports or motor vehicle accidents. The implications of these findings for diagnosis and treatment of TBI are discussed.


Asunto(s)
Traumatismos por Explosión/fisiopatología , Lesiones Encefálicas/fisiopatología , Encéfalo/metabolismo , Encéfalo/fisiopatología , Neuroimagen Funcional/métodos , Inhibición Psicológica , Veteranos/psicología , Adulto , Campaña Afgana 2001- , Traumatismos por Explosión/complicaciones , Lesiones Encefálicas/etiología , Femenino , Neuroimagen Funcional/instrumentación , Humanos , Guerra de Irak 2003-2011 , Imagen por Resonancia Magnética , Masculino , Pruebas Neuropsicológicas , Índices de Gravedad del Trauma , Estados Unidos
20.
Magn Reson Imaging ; 31(5): 695-9, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23295147

RESUMEN

INTRODUCTION: Diffusion tensor imaging (DTI) measures in patients with multiple sclerosis (MS), particularly those measures associated with a specific white matter pathway, have consistently shown correlations with function. This study sought to investigate correlations between DTI measures in the fornix and common cognitive deficits in MS patients, including episodic memory, working memory and attention. MATERIALS AND METHODS: Patients with MS and group age- and sex-matched controls underwent high-resolution diffusion scanning (1-mm isotropic voxels) and cognitive testing. Manually drawn forniceal regions of interest were applied to individual maps of tensor-derived measures, and mean values of transverse diffusivity (TD), mean diffusivity (MD), longitudinal diffusivity (LD) and fractional anisotropy (FA) were calculated. RESULTS: In 40 patients with MS [mean age ± S.D.=42.55 ± 9.1 years; Expanded Disability Status Scale (EDSS)=2.0 ± 1.2; Multiple Sclerosis Functional Composite (MSFC) score=0.38 ± 0.46] and 20 healthy controls (mean age ± S.D.=41.35 ± 9.7 years; EDSS=0.0 ± 0; MSFC score=0.74 ± 0.24), we found that FA, MD and TD values in the fornix were significantly different between groups (P<.03), and patient performance on the Brief Visuospatial Memory Test-Revised (BVMT-R) was correlated with DTI measures (P<.03). DISCUSSION: These results are consistent with findings of axonal degeneration in MS and support the use of DTI as an indicator of disease progression.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Fórnix/patología , Aumento de la Imagen/métodos , Trastornos de la Memoria/etiología , Trastornos de la Memoria/patología , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/patología , Adulto , Algoritmos , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...