Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6770, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914730

RESUMEN

Type I interferon (IFN) signalling is tightly controlled. Upon recognition of DNA by cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING) translocates along the endoplasmic reticulum (ER)-Golgi axis to induce IFN signalling. Termination is achieved through autophagic degradation or recycling of STING by retrograde Golgi-to-ER transport. Here, we identify the GTPase ADP-ribosylation factor 1 (ARF1) as a crucial negative regulator of cGAS-STING signalling. Heterozygous ARF1 missense mutations cause a previously unrecognized type I interferonopathy associated with enhanced IFN-stimulated gene expression. Disease-associated, GTPase-defective ARF1 increases cGAS-STING dependent type I IFN signalling in cell lines and primary patient cells. Mechanistically, mutated ARF1 perturbs mitochondrial morphology, causing cGAS activation by aberrant mitochondrial DNA release, and leads to accumulation of active STING at the Golgi/ERGIC due to defective retrograde transport. Our data show an unexpected dual role of ARF1 in maintaining cGAS-STING homeostasis, through promotion of mitochondrial integrity and STING recycling.


Asunto(s)
Interferón Tipo I , Humanos , Factor 1 de Ribosilacion-ADP/genética , Factor 1 de Ribosilacion-ADP/metabolismo , Interferón Tipo I/metabolismo , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Transducción de Señal
2.
Autophagy ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938186

RESUMEN

Macroautophagy/autophagy is a tightly regulated cellular process integral to homeostasis and innate immunity. As such, dysregulation of autophagy is associated with cancer, neurodegenerative disorders, and infectious diseases. While numerous factors that promote autophagy have been characterized, the key mechanisms that prevent excessive autophagy are less well understood. Here, we identify CSNK2/CK2 (casein kinase 2) as a negative regulator of autophagy. Pharmacological inhibition of CSNK2 activity or siRNA-mediated depletion of CSNK2 increased basal autophagic flux in cell lines and primary human lung cells. Vice versa, ectopic expression of CSNK2 reduced autophagic flux. Mechanistically, CSNK2 interacted with the FLN (filamin)-NHL domain-containing tripartite motif (TRIM) family members TRIM2, TRIM3 and TRIM71. Our data show that recruitment of CSNK2 to the C-terminal NHL domain of TRIM3 lead to its robust phosphorylation at serine 661 by CSNK2. A phosphorylation-defective mutant of TRIM3 was unable to reduce autophagosome numbers indicating that phosphorylation by CSNK2 is required for TRIM-mediated autophagy inhibition. All three TRIMs facilitated inactivation of the ULK1-BECN1 autophagy initiation complex by facilitating ULK1 serine 757 phosphorylation. Inhibition of CSNK2 promoted autophagy upon influenza A virus (IAV) and measles virus (MeV) infection. In line with this, targeting of CSNK2 or depletion of TRIM2, TRIM3 or TRIM71 enhanced autophagy-dependent restriction of IAV, MeV and human immunodeficiency virus 1 (HIV-1). Thus, our results identify the CSNK2-TRIM2, -TRIM3, -TRIM71 axis as a key regulatory pathway that limits autophagy. Targeting this axis may allow for therapeutic induction of autophagy against viral infections and in diseases associated with dysregulated autophagy.

3.
Eur J Nucl Med Mol Imaging ; 50(10): 3050-3061, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37261473

RESUMEN

PURPOSE: Fibroblast activation protein-α (FAP)-targeting radioligands have recently demonstrated high diagnostic potential. However, their therapeutic value is impaired by the short tumor residence time. Several strategies have been tested to overcome this limitation, but a head-to-head comparison has never been done. With the aim to identify strengths and limitations of the suggested strategies, we compared the monomer FAPI-46 versus (a) its dimer (FAPI-46-F1D), (b) two albumin binders conjugates (FAPI-46-Ibu (ibuprofen) and FAPI-46-EB (Evans Blue)), and (c) cyclic peptide FAP-2286. METHODS: 177Lu-labeled ligands were evaluated in vitro in cell lines with low (HT-1080.hFAP) and high (HEK-293.hFAP) humanFAP expression. SPECT/CT imaging and biodistribution studies were conducted in HT-1080.hFAP and HEK-293.hFAP xenografts. The areas under the curve (AUC) of the tumor uptake and tumor-to-critical-organs ratios and the absorbed doses were estimated. RESULTS: Radioligands showed IC50 in the picomolar range. Striking differences were observed in vivo regarding tumor uptake, residence, specificity, and total body distribution. All [177Lu]Lu-FAPI-46-based radioligands showed similar uptake between the two tumor models. [177Lu]Lu-FAP-2286 showed higher uptake in HEK-293.hFAP and the least background. The AUC of the tumor uptake and absorbed dose was higher for [177Lu]Lu-FAPI-46-F1D and the two albumin binder conjugates, [177Lu]Lu-FAPI-46-Ibu and [177Lu]Lu-FAPI-46-EB, in HT1080.hFAP xenografts and for [177Lu]Lu-FAPI-46-EB and [177Lu]Lu-FAP-2286 in HEK293.hFAP xenografts. The tumor-to-critical-organs AUC values and the absorbed doses were in favor of [177Lu]Lu-FAP-2286, but tumor-to-kidneys. CONCLUSION: The study indicated dimerization and cyclic peptide structures as promising strategies for prolonging tumor residence time, sparing healthy tissues. Albumin binding strategy outcome depended on the albumin binding moiety. The peptide showed advantages in terms of tumor-to-background ratios, besides tumor-to-kidneys, but its tumor uptake was FAP expression-dependent.


Asunto(s)
Albúminas , Péptidos , Humanos , Células HEK293 , Distribución Tisular , Línea Celular Tumoral , Albúminas/química , Péptidos Cíclicos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radioisótopos de Galio
4.
Life Sci Alliance ; 6(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36977594

RESUMEN

The IFN system constitutes a powerful antiviral defense machinery. Consequently, effective IFN responses protect against severe COVID-19 and exogenous IFNs inhibit SARS-CoV-2 in vitro. However, emerging SARS-CoV-2 variants of concern (VOCs) may have evolved reduced IFN sensitivity. Here, we determined differences in replication and IFN susceptibility of an early SARS-CoV-2 isolate (NL-02-2020) and the Alpha, Beta, Gamma, Delta, and Omicron VOCs in Calu-3 cells, iPSC-derived alveolar type-II cells (iAT2) and air-liquid interface (ALI) cultures of primary human airway epithelial cells. Our data show that Alpha, Beta, and Gamma replicated to similar levels as NL-02-2020. In comparison, Delta consistently yielded higher viral RNA levels, whereas Omicron was attenuated. All viruses were inhibited by type-I, -II, and -III IFNs, albeit to varying extend. Overall, Alpha was slightly less sensitive to IFNs than NL-02-2020, whereas Beta, Gamma, and Delta remained fully sensitive. Strikingly, Omicron BA.1 was least restricted by exogenous IFNs in all cell models. Our results suggest that enhanced innate immune evasion rather than higher replication capacity contributed to the effective spread of Omicron BA.1.


Asunto(s)
COVID-19 , Interferones , Humanos , Interferones/farmacología , SARS-CoV-2 , Antivirales/farmacología
5.
Med Microbiol Immunol ; 212(2): 125-131, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35366686

RESUMEN

The innate immune system is a powerful barrier against invading pathogens. Interferons (IFNs) are a major part of the cytokine-mediated anti-viral innate immune response. After recognition of a pathogen by immune sensors, signaling cascades are activated that culminate in the release of IFNs. These activate cells in an autocrine or paracrine fashion eventually setting cells in an anti-viral state via upregulation of hundreds of interferon-stimulated genes (ISGs). To evade the anti-viral effect of the IFN system, successful viruses like the pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolved strategies to counteract both IFN induction and signaling. In fact, more than half of the about 30 proteins encoded by SARS-CoV-2 target the IFN system at multiple levels to escape IFN-mediated restriction. Here, we review recent insights into the molecular mechanisms used by SARS-CoV-2 proteins to suppress IFN production and the establishment of an anti-viral state.


Asunto(s)
COVID-19 , Interferones , Humanos , Interferones/genética , SARS-CoV-2 , Antivirales/farmacología , Antivirales/uso terapéutico , Inmunidad Innata
6.
J Virol ; 96(11): e0059422, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35543509

RESUMEN

It has recently been shown that an early SARS-CoV-2 isolate (NL-02-2020) hijacks interferon-induced transmembrane proteins (IFITMs) for efficient replication in human lung cells, cardiomyocytes, and gut organoids. To date, several "variants of concern" (VOCs) showing increased infectivity and resistance to neutralization have emerged and globally replaced the early viral strains. Here, we determined whether the five current SARS-CoV-2 VOCs (Alpha, Beta, Gamma, Delta, and Omicron) maintained the dependency on IFITM proteins for efficient replication. We found that depletion of IFITM2 strongly reduces viral RNA production by all VOCs in the human epithelial lung cancer cell line Calu-3. Silencing of IFITM1 had modest effects, while knockdown of IFITM3 resulted in an intermediate phenotype. Strikingly, depletion of IFITM2 generally reduced infectious virus production by more than 4 orders of magnitude. In addition, an antibody directed against the N terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in induced pluripotent stem cell (iPSC)-derived alveolar epithelial type II cells, thought to represent major viral target cells in the lung. In conclusion, endogenously expressed IFITM proteins (especially IFITM2) are critical cofactors for efficient replication of genuine SARS-CoV-2 VOCs, including the currently dominant Omicron variant. IMPORTANCE Recent data indicate that SARS-CoV-2 requires endogenously expressed IFITM proteins for efficient infection. However, the results were obtained with an early SARS-CoV-2 isolate. Thus, it remained to be determined whether IFITMs are also important cofactors for infection of emerging SARS-CoV-2 VOCs that outcompeted the original strains in the meantime. This includes the Omicron VOC, which currently dominates the pandemic. Here, we show that depletion of endogenous IFITM2 expression almost entirely prevents productive infection of Alpha, Beta, Gamma, Delta, and Omicron SARS-CoV-2 VOCs in human lung cells. In addition, an antibody targeting the N terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in iPSC-derived alveolar epithelial type II cells. Our results show that SARS-CoV-2 VOCs, including the currently dominant Omicron variant, are strongly dependent on IFITM2 for efficient replication, suggesting a key proviral role of IFITMs in viral transmission and pathogenicity.


Asunto(s)
Pulmón , Proteínas de la Membrana , SARS-CoV-2 , Replicación Viral , COVID-19/virología , Línea Celular Tumoral , Humanos , Pulmón/virología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Internalización del Virus
7.
J Virol ; 96(6): e0207721, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35225672

RESUMEN

Emerging strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic, that show increased transmission fitness and/or immune evasion are classified as "variants of concern" (VOCs). Recently, a SARS-CoV-2 variant first identified in November 2021 in South Africa has been recognized as a fifth VOC, termed "Omicron." What makes this VOC so alarming is the high number of changes, especially in the viral Spike protein, and accumulating evidence for increased transmission efficiency and escape from neutralizing antibodies. In an amazingly short time, the Omicron VOC has outcompeted the previously dominating Delta VOC. However, it seems that the Omicron VOC is overall less pathogenic than other SARS-CoV-2 VOCs. Here, we provide an overview of the mutations in the Omicron genome and the resulting changes in viral proteins compared to other SARS-CoV-2 strains and discuss their potential functional consequences.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/inmunología , COVID-19/virología , Genoma Viral , Humanos , Evasión Inmune , Mutación , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/metabolismo
8.
Nat Commun ; 12(1): 6855, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34824253

RESUMEN

The bat sarbecovirus RaTG13 is a close relative of SARS-CoV-2, the cause of the COVID-19 pandemic. However, this bat virus was most likely unable to directly infect humans since its Spike (S) protein does not interact efficiently with the human ACE2 receptor. Here, we show that a single T403R mutation increases binding of RaTG13 S to human ACE2 and allows VSV pseudoparticle infection of human lung cells and intestinal organoids. Conversely, mutation of R403T in the SARS-CoV-2 S reduces pseudoparticle infection and viral replication. The T403R RaTG13 S is neutralized by sera from individuals vaccinated against COVID-19 indicating that vaccination might protect against future zoonoses. Our data suggest that a positively charged amino acid at position 403 in the S protein is critical for efficient utilization of human ACE2 by S proteins of bat coronaviruses. This finding could help to better predict the zoonotic potential of animal coronaviruses.


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , Unión Proteica , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Animales , COVID-19/virología , Vacunas contra la COVID-19 , Células CACO-2 , Clonación Molecular , Células HEK293 , Humanos , Simulación de Dinámica Molecular , Mutación , Replicón , Especificidad de la Especie , Células Madre , Zoonosis
9.
STAR Protoc ; 2(4): 100781, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34405154

RESUMEN

We present a protocol for analyzing the impact of SARS-CoV-2 proteins in interferon signaling using luciferase reporter assays. Here, the induction of defined promoters can be quantitatively assessed with high sensitivity and broad linear range. The results are similar to those obtained using qPCR to measure endogenous mRNA induction. The assay requires stringent normalization and confirmation of the results in more physiological settings. The protocol is adaptable for other viruses and other innate immune stimuli. For complete details on the use and execution of this protocol, please refer to Hayn et al. (2021).


Asunto(s)
COVID-19/patología , Regulación Viral de la Expresión Génica/efectos de los fármacos , Interferones/farmacología , Luciferasas/metabolismo , ARN Mensajero/metabolismo , SARS-CoV-2/metabolismo , Proteínas Virales/metabolismo , Antivirales/farmacología , COVID-19/metabolismo , COVID-19/virología , Humanos , Luciferasas/genética , Regiones Promotoras Genéticas , ARN Mensajero/genética , SARS-CoV-2/efectos de los fármacos , Proteínas Virales/genética , Tratamiento Farmacológico de COVID-19
10.
Autophagy ; 17(9): 2659-2661, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34281462

RESUMEN

As part of innate immune defenses, macroautophagy/autophagy targets viruses and viral components for lysosomal degradation and exposes pathogen-associated molecular patterns to facilitate recognition. However, viruses evolved sophisticated strategies to antagonize autophagy and even exploit it to promote their replication. In our recent study, we systematically analyzed the impact of individual SARS-CoV-2 proteins on autophagy. We showed that E, M, ORF3a, and ORF7a cause an accumulation of autophagosomes, whereas Nsp15 prevents the efficient formation of autophagosomes. Consequently, autophagic degradation of SQSTM1/p62 is decreased in the presence of E, ORF3a, ORF7a, and Nsp15. Notably, M does not alter SQSTM1 protein levels and colocalizes with accumulations of LC3B-positive membranes not resembling vesicles. Infection with SARS-CoV-2 prevents SQSTM1 degradation and increases lipidation of LC3B, indicating overall that the infection causes a reduction of autophagic flux. Our mechanistic analyses showed that the accessory proteins ORF3a and ORF7a both block autophagic degradation but use different strategies. While ORF3a prevents the fusion between autophagosomes and lysosomes, ORF7a reduces the acidity of lysosomes. In summary, we found that Nsp15, E, M, ORF3a, and ORF7a of SARS-CoV-2 manipulate cellular autophagy, and we determined the molecular mechanisms of ORF3a and ORF7a.


Asunto(s)
COVID-19 , SARS-CoV-2 , Autofagosomas , Autofagia , Humanos , Lisosomas
11.
Nat Commun ; 12(1): 4584, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34321474

RESUMEN

Interferon-induced transmembrane proteins (IFITMs 1, 2 and 3) can restrict viral pathogens, but pro- and anti-viral activities have been reported for coronaviruses. Here, we show that artificial overexpression of IFITMs blocks SARS-CoV-2 infection. However, endogenous IFITM expression supports efficient infection of SARS-CoV-2 in human lung cells. Our results indicate that the SARS-CoV-2 Spike protein interacts with IFITMs and hijacks them for efficient viral infection. IFITM proteins were expressed and further induced by interferons in human lung, gut, heart and brain cells. IFITM-derived peptides and targeting antibodies inhibit SARS-CoV-2 entry and replication in human lung cells, cardiomyocytes and gut organoids. Our results show that IFITM proteins are cofactors for efficient SARS-CoV-2 infection of human cell types representing in vivo targets for viral transmission, dissemination and pathogenesis and are potential targets for therapeutic approaches.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , Antígenos de Diferenciación/genética , Proteínas de la Membrana/genética , Proteínas de Unión al ARN/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Neutralizantes/farmacología , Antígenos de Diferenciación/metabolismo , Sitios de Unión , COVID-19/virología , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Humanos , Interferón beta/farmacología , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Glicoproteína de la Espiga del Coronavirus/metabolismo , Acoplamiento Viral/efectos de los fármacos
12.
Cell Rep ; 35(7): 109126, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33974846

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evades most innate immune responses but may still be vulnerable to some. Here, we systematically analyze the impact of SARS-CoV-2 proteins on interferon (IFN) responses and autophagy. We show that SARS-CoV-2 proteins synergize to counteract anti-viral immune responses. For example, Nsp14 targets the type I IFN receptor for lysosomal degradation, ORF3a prevents fusion of autophagosomes and lysosomes, and ORF7a interferes with autophagosome acidification. Most activities are evolutionarily conserved. However, SARS-CoV-2 Nsp15 antagonizes IFN signaling less efficiently than the orthologs of closely related RaTG13-CoV and SARS-CoV-1. Overall, SARS-CoV-2 proteins counteract autophagy and type I IFN more efficiently than type II or III IFN signaling, and infection experiments confirm potent inhibition by IFN-γ and -λ1. Our results define the repertoire and selected mechanisms of SARS-CoV-2 innate immune antagonists but also reveal vulnerability to type II and III IFN that may help to develop safe and effective anti-viral approaches.


Asunto(s)
COVID-19/virología , SARS-CoV-2/inmunología , Proteínas Virales/inmunología , Animales , Antivirales/farmacología , Autofagosomas/inmunología , Autofagia/inmunología , COVID-19/inmunología , Línea Celular , Chlorocebus aethiops , Exorribonucleasas/inmunología , Células HEK293 , Células HeLa , Humanos , Evasión Inmune , Inmunidad Innata , Interferón Tipo I/metabolismo , Interferones/metabolismo , Receptor de Interferón alfa y beta/antagonistas & inhibidores , Receptor de Interferón alfa y beta/inmunología , SARS-CoV-2/patogenicidad , Células Vero , Proteínas no Estructurales Virales/inmunología
13.
Nat Metab ; 3(2): 149-165, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33536639

RESUMEN

Infection-related diabetes can arise as a result of virus-associated ß-cell destruction. Clinical data suggest that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing the coronavirus disease 2019 (COVID-19), impairs glucose homoeostasis, but experimental evidence that SARS-CoV-2 can infect pancreatic tissue has been lacking. In the present study, we show that SARS-CoV-2 infects cells of the human exocrine and endocrine pancreas ex vivo and in vivo. We demonstrate that human ß-cells express viral entry proteins, and SARS-CoV-2 infects and replicates in cultured human islets. Infection is associated with morphological, transcriptional and functional changes, including reduced numbers of insulin-secretory granules in ß-cells and impaired glucose-stimulated insulin secretion. In COVID-19 full-body postmortem examinations, we detected SARS-CoV-2 nucleocapsid protein in pancreatic exocrine cells, and in cells that stain positive for the ß-cell marker NKX6.1 and are in close proximity to the islets of Langerhans in all four patients investigated. Our data identify the human pancreas as a target of SARS-CoV-2 infection and suggest that ß-cell infection could contribute to the metabolic dysregulation observed in patients with COVID-19.


Asunto(s)
Islotes Pancreáticos/virología , SARS-CoV-2/crecimiento & desarrollo , Anciano , Anciano de 80 o más Años , Enzima Convertidora de Angiotensina 2/biosíntesis , Enzima Convertidora de Angiotensina 2/genética , COVID-19/fisiopatología , Células Cultivadas , Diabetes Mellitus , Femenino , Humanos , Islotes Pancreáticos/citología , Islotes Pancreáticos/fisiopatología , Masculino , Páncreas Exocrino/citología , Páncreas Exocrino/fisiopatología , Páncreas Exocrino/virología , Enfermedades Pancreáticas/etiología , Enfermedades Pancreáticas/virología , Serina Endopeptidasas/biosíntesis , Serina Endopeptidasas/genética , Internalización del Virus , Replicación Viral
14.
Curr Opin Microbiol ; 59: 50-57, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32829025

RESUMEN

Tripartite motif (TRIM) proteins are a highly versatile family of host-cell factors that play an integral role in the mammalian defense against pathogens. TRIM proteins regulate either transcription-dependent antiviral responses such as pro-inflammatory cytokine induction, or they modulate other important cell-intrinsic defense pathways like autophagy. Additionally, TRIM proteins exert direct antiviral activity whereby they antagonize specific viral components through diverse mechanisms. Here, we summarize the latest discoveries on the molecular mechanisms of antiviral TRIM proteins and also discuss current and future trends in this fast-evolving field.


Asunto(s)
Antivirales , Proteínas de Motivos Tripartitos , Animales , Antivirales/metabolismo , Autofagia/inmunología , Citocinas/inmunología , Humanos , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo
15.
Cell Mol Gastroenterol Hepatol ; 11(4): 935-948, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33186749

RESUMEN

BACKGROUND AND AIMS: The COVID-19 pandemic has spread worldwide and poses a severe health risk. While most patients present mild symptoms, descending pneumonia can lead to severe respiratory insufficiency. Up to 50% of patients show gastrointestinal symptoms like diarrhea or nausea, intriguingly associating with prolonged symptoms and increased severity. Thus, models to understand and validate drug efficiency in the gut of COVID-19 patients are of urgent need. METHODS: Human intestinal organoids derived from pluripotent stem cells (PSC-HIOs) have led, due to their complexity in mimicking human intestinal architecture, to an unprecedented number of successful disease models including gastrointestinal infections. Here, we employed PSC-HIOs to dissect SARS-CoV-2 pathogenesis and its inhibition by remdesivir, one of the leading drugs investigated for treatment of COVID-19. RESULTS: Immunostaining for viral entry receptor ACE2 and SARS-CoV-2 spike protein priming protease TMPRSS2 showed broad expression in the gastrointestinal tract with highest levels in the intestine, the latter faithfully recapitulated by PSC-HIOs. Organoids could be readily infected with SARS-CoV-2 followed by viral spread across entire PSC-HIOs, subsequently leading to organoid deterioration. However, SARS-CoV-2 spared goblet cells lacking ACE2 expression. Importantly, we challenged PSC-HIOs for drug testing capacity. Specifically, remdesivir effectively inhibited SARS-CoV-2 infection dose-dependently at low micromolar concentration and rescued PSC-HIO morphology. CONCLUSIONS: Thus, PSC-HIOs are a valuable tool to study SARS-CoV-2 infection and to identify and validate drugs especially with potential action in the gut.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Tratamiento Farmacológico de COVID-19 , COVID-19/metabolismo , Células Madre Embrionarias Humanas , Mucosa Intestinal , Organoides , SARS-CoV-2/fisiología , Replicación Viral/efectos de los fármacos , Adenosina Monofosfato/farmacología , Alanina/farmacología , Células CACO-2 , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/patología , Células Madre Embrionarias Humanas/virología , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Mucosa Intestinal/virología , Organoides/metabolismo , Organoides/patología , Organoides/virología
16.
Nucleic Acids Res ; 48(19): 10890-10908, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33021676

RESUMEN

Although endogenous retroviruses (ERVs) are known to harbor cis-regulatory elements, their role in modulating cellular immune responses remains poorly understood. Using an RNA-seq approach, we show that several members of the ERV9 lineage, particularly LTR12C elements, are activated upon HIV-1 infection of primary CD4+ T cells. Intriguingly, HIV-1-induced ERVs harboring transcription start sites are primarily found in the vicinity of immunity genes. For example, HIV-1 infection activates LTR12C elements upstream of the interferon-inducible genes GBP2 and GBP5 that encode for broad-spectrum antiviral factors. Reporter assays demonstrated that these LTR12C elements drive gene expression in primary CD4+ T cells. In line with this, HIV-1 infection triggered the expression of a unique GBP2 transcript variant by activating a cryptic transcription start site within LTR12C. Furthermore, stimulation with HIV-1-induced cytokines increased GBP2 and GBP5 expression in human cells, but not in macaque cells that naturally lack the GBP5 gene and the LTR12C element upstream of GBP2. Finally, our findings suggest that GBP2 and GBP5 have already been active against ancient viral pathogens as they suppress the maturation of the extinct retrovirus HERV-K (HML-2). In summary, our findings uncover how human cells can exploit remnants of once-infectious retroviruses to regulate antiviral gene expression.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Retrovirus Endógenos/genética , Regulación de la Expresión Génica/inmunología , Infecciones por VIH/genética , Regiones Promotoras Genéticas , Subgrupos de Linfocitos T/inmunología , Animales , Linfocitos T CD4-Positivos/citología , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/inmunología , Células HEK293 , Infecciones por VIH/inmunología , VIH-1 , Humanos , Macaca mulatta , Subgrupos de Linfocitos T/citología
17.
Sci Rep ; 10(1): 12241, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32699244

RESUMEN

Autophagy is a cellular homeostatic pathway with functions ranging from cytoplasmic protein turnover to immune defense. Therapeutic modulation of autophagy has been demonstrated to positively impact the outcome of autophagy-dysregulated diseases such as cancer or microbial infections. However, currently available agents lack specificity, and new candidates for drug development or potential cellular targets need to be identified. Here, we present an improved method to robustly detect changes in autophagy in a high-throughput manner on a single cell level, allowing effective screening. This method quantifies eGFP-LC3B positive vesicles to accurately monitor autophagy. We have significantly streamlined the protocol and optimized it for rapid quantification of large numbers of cells in little time, while retaining accuracy and sensitivity. Z scores up to 0.91 without a loss of sensitivity demonstrate the robustness and aptness of this approach. Three exemplary applications outline the value of our protocols and cell lines: (I) Examining autophagy modulating compounds on four different cell types. (II) Monitoring of autophagy upon infection with e.g. measles or influenza A virus. (III) CRISPR/Cas9 screening for autophagy modulating factors in T cells. In summary, we offer ready-to-use protocols to generate sensitive autophagy reporter cells and quantify autophagy in high-throughput assays.


Asunto(s)
Autofagia/inmunología , Ensayos Analíticos de Alto Rendimiento/métodos , Mamíferos/inmunología , Animales , Sistemas CRISPR-Cas/inmunología , Línea Celular , Línea Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Infecciones/inmunología , Células Jurkat , Linfocitos T/inmunología , Células THP-1
18.
Science ; 369(6508): 1249-1255, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32680882

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the current coronavirus disease 2019 (COVID-19) pandemic. A major virulence factor of SARS-CoVs is the nonstructural protein 1 (Nsp1), which suppresses host gene expression by ribosome association. Here, we show that Nsp1 from SARS-CoV-2 binds to the 40S ribosomal subunit, resulting in shutdown of messenger RNA (mRNA) translation both in vitro and in cells. Structural analysis by cryo-electron microscopy of in vitro-reconstituted Nsp1-40S and various native Nsp1-40S and -80S complexes revealed that the Nsp1 C terminus binds to and obstructs the mRNA entry tunnel. Thereby, Nsp1 effectively blocks retinoic acid-inducible gene I-dependent innate immune responses that would otherwise facilitate clearance of the infection. Thus, the structural characterization of the inhibitory mechanism of Nsp1 may aid structure-based drug design against SARS-CoV-2.


Asunto(s)
Betacoronavirus/química , Evasión Inmune , Inmunidad Innata , Biosíntesis de Proteínas , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Betacoronavirus/inmunología , Betacoronavirus/metabolismo , Betacoronavirus/fisiología , Sitios de Unión , COVID-19 , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Microscopía por Crioelectrón , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/metabolismo , Humanos , Interferón beta/genética , Interferón beta/metabolismo , Modelos Moleculares , Pandemias , Neumonía Viral/inmunología , Neumonía Viral/virología , Unión Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , ARN Mensajero/metabolismo , Receptores Inmunológicos , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , SARS-CoV-2
19.
Nat Microbiol ; 5(10): 1247-1261, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32690953

RESUMEN

To avoid innate sensing and immune control, human immunodeficiency virus type 1 (HIV-1) has to prevent the accumulation of viral complementary DNA species. Here, we show that the late HIV-1 accessory protein Vpu hijacks DNA repair mechanisms to promote degradation of nuclear viral cDNA in cells that are already productively infected. Vpu achieves this by interacting with RanBP2-RanGAP1*SUMO1-Ubc9 SUMO E3-ligase complexes at the nuclear pore to reprogramme promyelocytic leukaemia protein nuclear bodies and reduce SUMOylation of Bloom syndrome protein, unleashing end degradation of viral cDNA. Concomitantly, Vpu inhibits RAD52-mediated homologous repair of viral cDNA, preventing the generation of dead-end circular forms of single copies of the long terminal repeat and permitting sustained nucleolytic attack. Our results identify Vpu as a key modulator of the DNA repair machinery. We show that Bloom syndrome protein eliminates nuclear HIV-1 cDNA and thereby suppresses immune sensing and proviral hyper-integration. Therapeutic targeting of DNA repair may facilitate the induction of antiviral immunity and suppress proviral integration replenishing latent HIV reservoirs.


Asunto(s)
Reparación del ADN , Infecciones por VIH/virología , VIH-1/fisiología , Interacciones Huésped-Patógeno , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Inmunidad Innata , Proteínas Reguladoras y Accesorias Virales/metabolismo , Integración Viral , Regulación Viral de la Expresión Génica , Infecciones por VIH/genética , Infecciones por VIH/inmunología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Modelos Biológicos , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Reparación del ADN por Recombinación , Sumoilación
20.
Cell Rep ; 27(7): 2092-2104.e10, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31091448

RESUMEN

Guanylate-binding protein (GBP) 5 is an interferon (IFN)-inducible cellular factor reducing HIV-1 infectivity by an incompletely understood mechanism. Here, we show that this activity is shared by GBP2, but not by other members of the human GBP family. GBP2/5 decrease the activity of the cellular proprotein convertase furin, which mediates conversion of the HIV-1 envelope protein (Env) precursor gp160 into mature gp120 and gp41. Because this process primes HIV-1 Env for membrane fusion, viral particles produced in the presence of GBP2/5 are poorly infectious due to increased incorporation of non-functional gp160. Furin activity is critical for the processing of envelope glycoproteins of many viral pathogens. Consistently, GBP2/5 also inhibit Zika, measles, and influenza A virus replication and decrease infectivity of viral particles carrying glycoproteins of Marburg and murine leukemia viruses. Collectively, our results show that GPB2/5 exert broad antiviral activity by suppressing the activity of the virus-dependency factor furin.


Asunto(s)
Furina/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteína gp120 de Envoltorio del VIH/metabolismo , Proteína gp41 de Envoltorio del VIH/metabolismo , VIH-1/metabolismo , Furina/genética , Proteínas de Unión al GTP/genética , Células HEK293 , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp41 de Envoltorio del VIH/genética , VIH-1/genética , Humanos , Virus de la Influenza A/genética , Virus de la Influenza A/metabolismo , Virus del Sarampión/genética , Virus del Sarampión/metabolismo , Virus Zika/genética , Virus Zika/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...