Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
2.
J Mol Biol ; 435(13): 168113, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37080423

RESUMEN

Vaccines are among the greatest tools for prevention and control of disease. They have eliminated smallpox from the planet, decreased morbidity and mortality for major infectious diseases like polio, measles, mumps, and rubella, significantly blunted the impact of the COVID-19 pandemic, and prevented viral induced cancers such as cervical cancer caused by human papillomavirus. Recent technological advances, in genomics, structural biology, and human immunology have transformed vaccine development, enabling new technologies such as mRNA vaccines to greatly accelerate development of new and improved vaccines. In this review, we briefly highlight the history of vaccine development, and provide examples of where advances in genomics and structural biology, paved the way for development of vaccines for bacterial and viral diseases.


Asunto(s)
Biología Molecular , Vacunas Virales , Virosis , Humanos , COVID-19/prevención & control , Biología Molecular/historia , Biología Molecular/tendencias , Pandemias , Virosis/historia , Virosis/prevención & control , Vacunas Virales/historia
3.
Front Immunol ; 12: 690470, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777332

RESUMEN

Vaccination to prevent infectious disease is one of the most successful public health interventions ever developed. And yet, variability in individual vaccine effectiveness suggests that a better mechanistic understanding of vaccine-induced immune responses could improve vaccine design and efficacy. We have previously shown that protective antibody levels could be elicited in a subset of recipients with only a single dose of the hepatitis B virus (HBV) vaccine and that a wide range of antibody levels were elicited after three doses. The immune mechanisms responsible for this vaccine response variability is unclear. Using single cell RNA sequencing of sorted innate immune cell subsets, we identified two distinct myeloid dendritic cell subsets (NDRG1-expressing mDC2 and CDKN1C-expressing mDC4), the ratio of which at baseline (pre-vaccination) correlated with the immune response to a single dose of HBV vaccine. Our results suggest that the participants in our vaccine study were in one of two different dendritic cell dispositional states at baseline - an NDRG2-mDC2 state in which the vaccine elicited an antibody response after a single immunization or a CDKN1C-mDC4 state in which the vaccine required two or three doses for induction of antibody responses. To explore this correlation further, genes expressed in these mDC subsets were used for feature selection prior to the construction of predictive models using supervised canonical correlation machine learning. The resulting models showed an improved correlation with serum antibody titers in response to full vaccination. Taken together, these results suggest that the propensity of circulating dendritic cells toward either activation or suppression, their "dispositional endotype" at pre-vaccination baseline, could dictate response to vaccination.


Asunto(s)
Células Dendríticas/inmunología , Anticuerpos contra la Hepatitis B/inmunología , Vacunas contra Hepatitis B/inmunología , Hepatitis B/prevención & control , Aprendizaje Automático , Análisis de la Célula Individual , Adulto , Anciano , Análisis de Correlación Canónica , Células Dendríticas/metabolismo , Femenino , Perfilación de la Expresión Génica , Hepatitis B/epidemiología , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno , Humanos , Masculino , Persona de Mediana Edad , Análisis de la Célula Individual/métodos , Vacunación , Eficacia de las Vacunas
4.
Sci Transl Med ; 13(579)2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536277

RESUMEN

Development of safe and effective COVID-19 vaccines is a global priority and the best hope for ending the COVID-19 pandemic. Remarkably, in less than 1 year, vaccines have been developed and shown to be efficacious and are already being deployed worldwide. Yet, many challenges remain. Immune senescence and comorbidities in aging populations and immune dysregulation in populations living in low-resource settings may impede vaccine effectiveness. Distribution of vaccines among these populations where vaccine access is historically low remains challenging. In this Review, we address these challenges and provide strategies for ensuring that vaccines are developed and deployed for those most vulnerable.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/virología , Susceptibilidad a Enfermedades , SARS-CoV-2/fisiología , Animales , Vacunas contra la COVID-19/efectos adversos , Modelos Animales de Enfermedad , Humanos , Filogenia
6.
Front Immunol ; 11: 578801, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329547

RESUMEN

Background: Vaccination remains one of the most effective means of reducing the burden of infectious diseases globally. Improving our understanding of the molecular basis for effective vaccine response is of paramount importance if we are to ensure the success of future vaccine development efforts. Methods: We applied cutting edge multi-omics approaches to extensively characterize temporal molecular responses following vaccination with hepatitis B virus (HBV) vaccine. Data were integrated across cellular, epigenomic, transcriptomic, proteomic, and fecal microbiome profiles, and correlated to final HBV antibody titres. Results: Using both an unsupervised molecular-interaction network integration method (NetworkAnalyst) and a data-driven integration approach (DIABLO), we uncovered baseline molecular patterns and pathways associated with more effective vaccine responses to HBV. Biological associations were unravelled, with signalling pathways such as JAK-STAT and interleukin signalling, Toll-like receptor cascades, interferon signalling, and Th17 cell differentiation emerging as important pre-vaccination modulators of response. Conclusion: This study provides further evidence that baseline cellular and molecular characteristics of an individual's immune system influence vaccine responses, and highlights the utility of integrating information across many parallel molecular datasets.


Asunto(s)
Genómica , Vacunas contra Hepatitis B/uso terapéutico , Hepatitis B/prevención & control , Inmunogenicidad Vacunal , Biología de Sistemas , Vacunación , Adulto , Anciano , Epigénesis Genética , Epigenómica , Heces/microbiología , Femenino , Microbioma Gastrointestinal , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Hepatitis B/genética , Hepatitis B/metabolismo , Hepatitis B/microbiología , Anticuerpos contra la Hepatitis B/sangre , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Mapas de Interacción de Proteínas , Proteómica , Factores de Tiempo , Transcriptoma , Resultado del Tratamiento
7.
Front Immunol ; 11: 580373, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33250895

RESUMEN

Conventional vaccine design has been based on trial-and-error approaches, which have been generally successful. However, there have been some major failures in vaccine development and we still do not have highly effective licensed vaccines for tuberculosis, HIV, respiratory syncytial virus, and other major infections of global significance. Approaches at rational vaccine design have been limited by our understanding of the immune response to vaccination at the molecular level. Tools now exist to undertake in-depth analysis using systems biology approaches, but to be fully realized, studies are required in humans with intensive blood and tissue sampling. Methods that support this intensive sampling need to be developed and validated as feasible. To this end, we describe here a detailed approach that was applied in a study of 15 healthy adults, who were immunized with hepatitis B vaccine. Sampling included ~350 mL of blood, 12 microbiome samples, and lymph node fine needle aspirates obtained over a ~7-month period, enabling comprehensive analysis of the immune response at the molecular level, including single cell and tissue sample analysis. Samples were collected for analysis of immune phenotyping, whole blood and single cell gene expression, proteomics, lipidomics, epigenetics, whole blood response to key immune stimuli, cytokine responses, in vitro T cell responses, antibody repertoire analysis and the microbiome. Data integration was undertaken using different approaches-NetworkAnalyst and DIABLO. Our results demonstrate that such intensive sampling studies are feasible in healthy adults, and data integration tools exist to analyze the vast amount of data generated from a multi-omics systems biology approach. This will provide the basis for a better understanding of vaccine-induced immunity and accelerate future rational vaccine design.


Asunto(s)
Vacunas contra Hepatitis B/inmunología , Virus de la Hepatitis B/fisiología , Hepatitis B/diagnóstico , Monitorización Inmunológica/métodos , Vacunación/métodos , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Hepatitis B/inmunología , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Biología de Sistemas , Resultado del Tratamiento
8.
Vaccine ; 38(28): 4484, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32402757
9.
Trends Immunol ; 41(6): 457-465, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32340868

RESUMEN

Immune signatures measured at baseline and immediately prior to vaccination may predict the immune response to vaccination. Such pre-vaccine assessment might allow not only population-based, but also more personalized vaccination strategies ('precision vaccination'). If baseline immune signatures are predictive, the underlying mechanism they reflect may also determine vaccination outcome. Thus, baseline signatures might contribute to identifying interventional targets to be modulated prior to vaccination in order to improve vaccination responses. This concept has the potential to transform vaccination strategies and usher in a new approach to improve global health.


Asunto(s)
Inmunidad Activa , Vacunas , Humanos , Inmunidad Activa/inmunología , Vacunación/tendencias , Vacunas/inmunología
11.
Vaccine ; 38(28): 4485-4486, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-31443989

RESUMEN

Vaccines are one of the most successful public health interventions in our history resulting in eradication of small pox, near eradication of polio and major reductions in case number and global morbidity and mortality for numerous diseases (Centers for Disease C, 1999) [1]. However, vaccine development has been less successful against complex infectious diseases, where pathogen variability and/or immune evasion mechanisms have combined to pose major obstacles, and have been unsuccessful against non-communicable diseases, including cancer, autoimmunity, allergy, neurodegenerative and metabolic diseases (Koff et al., 2013) [2]. In addition, the current state of vaccine development is an expensive, slow and laborious process, costing billions of dollars, taking decades, with less than a 10% rate of success (Pronker et al., 2013) [3]. While some vaccines, such as the smallpox vaccine approach the gold standard of life-long protection in everyone following a single immunization, other vaccines are less effective, often requiring multiple immunizations, being less effective to populations most susceptible to disease such as infants, the elderly, and those living in the developing world. There is clearly an urgent need to determine ways to improve not just the effectiveness of the vaccines themselves but also the very processes by which they are developed.


Asunto(s)
Poliomielitis , Vacuna contra Viruela , Vacunas , Anciano , Humanos , Inmunización , Lactante , Vacunación
12.
Hum Vaccin Immunother ; 14(9): 2214-2216, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29847214

RESUMEN

Although the success of vaccination to date has been unprecedented, our inadequate understanding of the details of the human immune response to immunization has resulted in several recent vaccine failures and significant delays in the development of high-need vaccines for global infectious diseases and cancer. Because of the need to better understand the immense complexity of the human immune system, the Human Vaccines Project was launched in 2015 with the mission to decode the human immune response to accelerate development of vaccines and immunotherapies for major diseases. The Project currently has three programs: 1) The Human Immunome Program, with the goal of deciphering the complete repertoire of B and T cell receptors across the human population, termed the Human Immunome, 2) The Rules of Immunogenicity Program, with the goal of understanding the key principles of how a vaccine elicits a protective and durable response using a system immunology approach, and 3) The Universal Influenza Vaccine Initiative (UIVI), with the goal of conducting experimental clinical trials to understand the influence of influenza pre-exposures on subsequent influenza immunization and the mechanisms of protection. Given the dramatic advances in computational and systems biology, genomics, immune monitoring, bioinformatics and machine learning, there is now an unprecedented opportunity to unravel the intricacies of the human immune response to immunization, ushering in a new era in vaccine development.


Asunto(s)
Inmunidad Adaptativa , Sistema Inmunológico/fisiología , Inmunidad Celular , Inmunidad Humoral , Inmunidad Innata , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/aislamiento & purificación , Humanos , Biología de Sistemas/tendencias
13.
Expert Rev Vaccines ; 16(6): 535-544, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28434256

RESUMEN

Biomedical research has become a data intensive science in which high throughput experimentation is producing comprehensive data about biological systems at an ever-increasing pace. The Human Vaccines Project is a new public-private partnership, with the goal of accelerating development of improved vaccines and immunotherapies for global infectious diseases and cancers by decoding the human immune system. To achieve its mission, the Project is developing a Bioinformatics Hub as an open-source, multidisciplinary effort with the overarching goal of providing an enabling infrastructure to support the data processing, analysis and knowledge extraction procedures required to translate high throughput, high complexity human immunology research data into biomedical knowledge, to determine the core principles driving specific and durable protective immune responses.


Asunto(s)
Biología Computacional/métodos , Descubrimiento de Drogas/métodos , Vacunas/inmunología , Humanos
14.
Retrovirology ; 13(1): 81, 2016 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-27871328

RESUMEN

BACKGROUND: Antigenicity of HIV-1 envelope proteins (Envs) of both lab-adapted and primary isolates expressed on the cell surface rarely match with in vitro neutralization of viruses, pseudo-typed with corresponding Envs. Often, both neutralizing and non-neutralizing antibodies bind to Envs expressed on the cell membrane. This could be due to the lack of efficient cleavage of Env expressed on the cell surface. Naturally occurring, efficiently cleaved Envs with appropriate antigenic properties are relatively rare. Given viral diversity it is essential to increase the pool of candidate Envs suitable for immunogen design. Previously, it has been reported that JRFL Env is the only clade B Env, which is efficiently cleaved on the cell surface and retains desirable antigenic properties. JRCSF is a clade B Env isolated from the same patient as JRFL. JRCSF Env has not been explored aggressively for designing immunogen as the binding characteristics of JRCSF Env to broadly neutralizing antibodies on the cell surface and its cleavage status are unknown. RESULTS: Although JRCSF preferentially binds to most of the other gp120-directed neutralizing antibodies and cleavage dependent antibody, PGT151 efficiently, it binds poorly to CD4-binding-site-directed (CD4-bs-directed) neutralizing antibodies on cell surface. Membrane bound form of modified JRCSF Env containing the N197D mutation binds to CD4-bs-directed neutralizing antibodies better than JRFL, without debilitating its ability to bind quaternary epitope-directed neutralizing antibodies or exposing the CD4i antibody epitopes. In comparison to JRFL (E168K), JRCSF Env binds more efficiently to PG9/PGT145 class of V1/V2-directed conformational antibodies. Biochemical, cell surface staining and gp120 shedding experiments suggest that JRCSF is efficiently cleaved on the cell surface. CONCLUSIONS: Binding of JRCSF Env expressed on cell surface to the various HIV-1 Env-directed antibodies has not been reported earlier. Here, for the first time, we report that compared to JRFL, JRCSF displays epitopes for a larger number of broadly neutralizing antibodies and is also efficiently cleaved when expressed on the cell surface. Thus, considering the diversity of viral Envs and the discovery of conformation dependent glycan-directed antibodies in HIV-1 infected individuals, an innately cleaved JRCSF Env as present on the viral membrane and displaying those distinct epitopes may be an important candidate for immunogen design.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Epítopos , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , VIH-1/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Proteína gp120 de Envoltorio del VIH/genética , VIH-1/genética , Humanos , Unión Proteica , Conformación Proteica , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
15.
Curr Opin HIV AIDS ; 11(6): 601-606, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27636502

RESUMEN

PURPOSE OF REVIEW: The purpose is to review recent novel approaches in HIV vaccine research and development being undertaken in the preclinical and early clinical space, as well as related and novel nonvaccine approaches such as genetic delivery of broadly neutralizing antibodies for protection from HIV infection and AIDS. RECENT FINDINGS: We review novel HIV envelope immunogen design, including native trimer and germline targeting approaches as well as genetic delivery of broadly neutralizing antibodies and replicating vector vaccinesSUMMARY: Despite 30+ years of research and development, and billions of dollars spent, a well tolerated and effective HIV vaccine remains a public health priority for any chance of ending the AIDS pandemic. It has become very clear that significant investments in novel technologies, innovation, and multidisciplinary science will be necessary to accelerate progress.


Asunto(s)
Vacunas contra el SIDA/inmunología , Vacunas contra el SIDA/aislamiento & purificación , Evaluación Preclínica de Medicamentos , Infecciones por VIH/prevención & control , Infecciones por VIH/terapia , Inmunoterapia/métodos , Investigación Biomédica/tendencias , Descubrimiento de Drogas/tendencias , Humanos
16.
Retrovirology ; 13(1): 41, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27307004

RESUMEN

BACKGROUND: Broadly neutralizing antibodies to HIV-1 elicited in infected individuals evolves through shifts in their molecular specificities to viral envelope (Env) in the disease course. Recently, we showed that resistance of circulating HIV-1 clade C to the autologous plasma obtained from one Indian elite neutralizer is associated with mutations in V1 loop. In the present study, we examined the genetic attributes associated with exceptional sensitivity of pseudoviruses expressing an env gene obtained from the follow up visit contemporaneous plasma of the same donor. RESULTS: Examination of chimeric autologous Envs, we found that enhanced neutralization sensitivity is associated with mutations in the V3/C3 region. A positive association between V3/C3 mutation mediated enhanced autologous neutralization of autologous viruses with their sensitivity to both neutralizing and non-neutralizing monoclonal antibodies was found. Interestingly, we found that depletion of autologous plasma with trimeric and monomeric Envs conferred the sensitive Env with resistance indicating that mutations in V3/C3 region altered Env conformation towards optimal exposure of epitopes targeted by the neutralizing and non-neutralizing antibodies. CONCLUSION: In summary, we found distinct vulnerabilities associated with evasion of circulating viruses to broadly neutralizing antibodies mounted in an Indian elite neutralizer.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/genética , Infecciones por VIH/inmunología , VIH-1/inmunología , Mutación , Fragmentos de Péptidos/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/sangre , Epítopos , Anticuerpos Anti-VIH/sangre , Infecciones por VIH/virología , VIH-1/genética , Humanos , Evasión Inmune , Pruebas de Neutralización , Plasma/inmunología , Plasma/virología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
17.
Science ; 352(6287): 828-33, 2016 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-27174988

RESUMEN

The HIV-1 fusion peptide, comprising 15 to 20 hydrophobic residues at the N terminus of the Env-gp41 subunit, is a critical component of the virus-cell entry machinery. Here, we report the identification of a neutralizing antibody, N123-VRC34.01, which targets the fusion peptide and blocks viral entry by inhibiting conformational changes in gp120 and gp41 subunits of Env required for entry. Crystal structures of N123-VRC34.01 liganded to the fusion peptide, and to the full Env trimer, revealed an epitope consisting of the N-terminal eight residues of the gp41 fusion peptide and glycan N88 of gp120, and molecular dynamics showed that the N-terminal portion of the fusion peptide can be solvent-exposed. These results reveal the fusion peptide to be a neutralizing antibody epitope and thus a target for vaccine design.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Proteína gp120 de Envoltorio del VIH/inmunología , Proteína gp41 de Envoltorio del VIH/inmunología , VIH-1/inmunología , Proteínas Virales de Fusión/inmunología , Secuencia de Aminoácidos , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Neutralizantes/ultraestructura , Anticuerpos Antivirales/ultraestructura , Linfocitos B/inmunología , Linfocitos B/virología , Cristalografía por Rayos X , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Epítopos Inmunodominantes/inmunología , Datos de Secuencia Molecular , Péptidos/inmunología , Conformación Proteica , Internalización del Virus
18.
Curr Opin Biotechnol ; 42: 147-151, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27153215

RESUMEN

In the almost 35 years since the discovery of HIV, there has been great progress in developing effective treatments. More recently, there have also been advances in developing novel prevention strategies. Yet a vaccine that could prevent HIV infection remains elusive. Most licensed vaccines provide protection by inducing antibodies. For HIV, vaccine-induced antibodies must be capable of protecting against the multiple variants of HIV in circulation around the globe, so-called broadly neutralizing antibodies. Recent progress in the identification and characterization of such antibodies, as well as advances in designing candidates that stimulate cellular immunity and results from recent clinical trials are fueling efforts to develop an HIV vaccine that could vanquish the virus once and for all.


Asunto(s)
Vacunas contra el SIDA/uso terapéutico , Síndrome de Inmunodeficiencia Adquirida/terapia , Infecciones por VIH/terapia , VIH-1/inmunología , Vacunas contra el SIDA/inmunología , Síndrome de Inmunodeficiencia Adquirida/complicaciones , Animales , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Neutralizantes/uso terapéutico , Infecciones por VIH/complicaciones , Humanos , Inmunogenicidad Vacunal , Potencia de la Vacuna
19.
Cell ; 165(4): 813-26, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27114034

RESUMEN

The HIV-1-envelope (Env) trimer is covered by a glycan shield of ∼90 N-linked oligosaccharides, which comprises roughly half its mass and is a key component of HIV evasion from humoral immunity. To understand how antibodies can overcome the barriers imposed by the glycan shield, we crystallized fully glycosylated Env trimers from clades A, B, and G, visualizing the shield at 3.4-3.7 Å resolution. These structures reveal the HIV-1-glycan shield to comprise a network of interlocking oligosaccharides, substantially ordered by glycan crowding, that encase the protein component of Env and enable HIV-1 to avoid most antibody-mediated neutralization. The revealed features delineate a taxonomy of N-linked glycan-glycan interactions. Crowded and dispersed glycans are differently ordered, conserved, processed, and recognized by antibody. The structures, along with glycan-array binding and molecular dynamics, reveal a diversity in oligosaccharide affinity and a requirement for accommodating glycans among known broadly neutralizing antibodies that target the glycan-shielded trimer.


Asunto(s)
VIH-1/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Cristalografía por Rayos X , Glicosilación , VIH-1/clasificación , VIH-1/inmunología , Evasión Inmune , Modelos Moleculares , Simulación de Dinámica Molecular , Polisacáridos/análisis , Polisacáridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...