Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
medRxiv ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38766040

RESUMEN

Analyzing anatomic shapes of tissues and organs is pivotal for accurate disease diagnostics and clinical decision-making. One prominent disease that depends on anatomic shape analysis is osteoarthritis, which affects 30 million Americans. To advance osteoarthritis diagnostics and prognostics, we introduce ShapeMed-Knee , a 3D shape dataset with 9,376 high-resolution, medical-imaging-based 3D shapes of both femur bone and cartilage. Besides data, ShapeMed-Knee includes two benchmarks for assessing reconstruction accuracy and five clinical prediction tasks that assess the utility of learned shape representations. Leveraging ShapeMed-Knee, we develop and evaluate a novel hybrid explicit-implicit neural shape model which achieves up to 40% better reconstruction accuracy than a statistical shape model and implicit neural shape model. Our hybrid models achieve state-of-the-art performance for preserving cartilage biomarkers; they're also the first models to successfully predict localized structural features of osteoarthritis, outperforming shape models and convolutional neural networks applied to raw magnetic resonance images and segmentations. The ShapeMed-Knee dataset provides medical evaluations to reconstruct multiple anatomic surfaces and embed meaningful disease-specific information. ShapeMed-Knee reduces barriers to applying 3D modeling in medicine, and our benchmarks highlight that advancements in 3D modeling can enhance the diagnosis and risk stratification for complex diseases. The dataset, code, and benchmarks will be made freely accessible.

3.
Sci Rep ; 14(1): 8253, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589478

RESUMEN

This work presents a deep learning approach for rapid and accurate muscle water T2 with subject-specific fat T2 calibration using multi-spin-echo acquisitions. This method addresses the computational limitations of conventional bi-component Extended Phase Graph fitting methods (nonlinear-least-squares and dictionary-based) by leveraging fully connected neural networks for fast processing with minimal computational resources. We validated the approach through in vivo experiments using two different MRI vendors. The results showed strong agreement of our deep learning approach with reference methods, summarized by Lin's concordance correlation coefficients ranging from 0.89 to 0.97. Further, the deep learning method achieved a significant computational time improvement, processing data 116 and 33 times faster than the nonlinear least squares and dictionary methods, respectively. In conclusion, the proposed approach demonstrated significant time and resource efficiency improvements over conventional methods while maintaining similar accuracy. This methodology makes the processing of water T2 data faster and easier for the user and will facilitate the utilization of the use of a quantitative water T2 map of muscle in clinical and research studies.


Asunto(s)
Algoritmos , Aprendizaje Profundo , Agua , Calibración , Imagen por Resonancia Magnética/métodos , Músculos/diagnóstico por imagen , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo
4.
Skeletal Radiol ; 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38492029

RESUMEN

Musculoskeletal (MSK) disorders are associated with large impacts on patient's pain and quality of life. Conventional morphological imaging of tissue structure is limited in its ability to detect pain generators, early MSK disease, and rapidly assess treatment efficacy. Positron emission tomography (PET), which offers unique capabilities to evaluate molecular and metabolic processes, can provide novel information about early pathophysiologic changes that occur before structural or even microstructural changes can be detected. This sensitivity not only makes it a powerful tool for detection and characterization of disease, but also a tool able to rapidly assess the efficacy of therapies. These benefits have garnered more attention to PET imaging of MSK disorders in recent years. In this narrative review, we discuss several applications of multimodal PET imaging in non-oncologic MSK diseases including arthritis, osteoporosis, and sources of pain and inflammation. We also describe technical considerations and recent advancements in technology and radiotracers as well as areas of emerging interest for future applications of multimodal PET imaging of MSK conditions. Overall, we present evidence that the incorporation of PET through multimodal imaging offers an exciting addition to the field of MSK radiology and will likely prove valuable in the transition to an era of precision medicine.

5.
Semin Musculoskelet Radiol ; 27(6): 618-631, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37935208

RESUMEN

Chronic knee pain is a common condition. Causes of knee pain include trauma, inflammation, and degeneration, but in many patients the pathophysiology remains unknown. Recent developments in advanced magnetic resonance imaging (MRI) techniques and molecular imaging facilitate more in-depth research focused on the pathophysiology of chronic musculoskeletal pain and more specifically inflammation. The forthcoming new insights can help develop better targeted treatment, and some imaging techniques may even serve as imaging biomarkers for predicting and assessing treatment response in the future. This review highlights the latest developments in perfusion MRI, diffusion MRI, and molecular imaging with positron emission tomography/MRI and their application in the painful knee. The primary focus is synovial inflammation, also known as synovitis. Bone perfusion and bone metabolism are also addressed.


Asunto(s)
Dolor Musculoesquelético , Sinovitis , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/patología , Imagen por Resonancia Magnética/métodos , Sinovitis/etiología , Sinovitis/patología , Inflamación/patología , Imagen Molecular/efectos adversos
6.
J Magn Reson Imaging ; 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37854004

RESUMEN

Magnetic resonance imaging (MRI) can provide accurate and non-invasive diagnoses of lower extremity injuries in athletes. Sport-related injuries commonly occur in and around the knee and can affect the articular cartilage, patellar tendon, hamstring muscles, and bone. Sports medicine physicians utilize MRI to evaluate and diagnose injury, track recovery, estimate return to sport timelines, and assess the risk of recurrent injury. This article reviews the current literature and describes novel developments of quantitative MRI tools that can further advance our understanding of sports injury diagnosis, prevention, and treatment while minimizing injury risk and rehabilitation time. Innovative approaches for enhancing the early diagnosis and treatment of musculoskeletal injuries in basketball players span a spectrum of techniques. These encompass the utilization of T2 , T1ρ , and T2 * quantitative MRI, along with dGEMRIC and Na-MRI to assess articular cartilage injuries, 3D-Ultrashort echo time MRI for patellar tendon injuries, diffusion tensor imaging for acute myotendinous injuries, and sagittal short tau inversion recovery and axial long-axis T1 -weighted, and 3D Cube sequences for bone stress imaging. Future studies should further refine and validate these MR-based quantitative techniques while exploring the lifelong cumulative impact of basketball on players' knees. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.

7.
MAGMA ; 36(5): 711-724, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37142852

RESUMEN

PURPOSE: [Formula: see text] mapping is a powerful tool for studying osteoarthritis (OA) changes and bilateral imaging may be useful in investigating the role of between-knee asymmetry in OA onset and progression. The quantitative double-echo in steady-state (qDESS) can provide fast simultaneous bilateral knee [Formula: see text] and high-resolution morphometry for cartilage and meniscus. The qDESS uses an analytical signal model to compute [Formula: see text] relaxometry maps, which require knowledge of the flip angle (FA). In the presence of [Formula: see text] inhomogeneities, inconsistencies between the nominal and actual FA can affect the accuracy of [Formula: see text] measurements. We propose a pixel-wise [Formula: see text] correction method for qDESS [Formula: see text] mapping exploiting an auxiliary [Formula: see text] map to compute the actual FA used in the model. METHODS: The technique was validated in a phantom and in vivo with simultaneous bilateral knee imaging. [Formula: see text] measurements of femoral cartilage (FC) of both knees of six healthy participants were repeated longitudinally to investigate the association between [Formula: see text] variation and [Formula: see text]. RESULTS: The results showed that applying the [Formula: see text] correction mitigated [Formula: see text] variations that were driven by [Formula: see text] inhomogeneities. Specifically, [Formula: see text] left-right symmetry increased following the [Formula: see text] correction ([Formula: see text] = 0.74 > [Formula: see text] = 0.69). Without the [Formula: see text] correction, [Formula: see text] values showed a linear dependence with [Formula: see text]. The linear coefficient decreased using the [Formula: see text] correction (from 24.3 ± 1.6 ms to 4.1 ± 1.8) and the correlation was not statistically significant after the application of the Bonferroni correction (p value > 0.01). CONCLUSION: The study showed that [Formula: see text] correction could mitigate variations driven by the sensitivity of the qDESS [Formula: see text] mapping method to [Formula: see text], therefore, increasing the sensitivity to detect real biological changes. The proposed method may improve the robustness of bilateral qDESS [Formula: see text] mapping, allowing for an accurate and more efficient evaluation of OA pathways and pathophysiology through longitudinal and cross-sectional studies.


Asunto(s)
Articulación de la Rodilla , Imagen por Resonancia Magnética , Humanos , Estudios Transversales , Imagen por Resonancia Magnética/métodos , Articulación de la Rodilla/diagnóstico por imagen , Imagenología Tridimensional , Fantasmas de Imagen
8.
Am Heart J ; 259: 68-78, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36796574

RESUMEN

In this manuscript, we describe the design and rationale of a randomized controlled trial in pediatric Fontan patients to test the hypothesis that a live-video-supervised exercise (aerobic+resistance) intervention will improve cardiac and physical capacity; muscle mass, strength, and function; and endothelial function. Survival of children with single ventricles beyond the neonatal period has increased dramatically with the staged Fontan palliation. Yet, long-term morbidity remains high. By age 40, 50% of Fontan patients will have died or undergone heart transplantation. Factors that contribute to onset and progression of heart failure in Fontan patients remain incompletely understood. However, it is established that Fontan patients have poor exercise capacity which is associated with a greater risk of morbidity and mortality. Furthermore, decreased muscle mass, abnormal muscle function, and endothelial dysfunction in this patient population is known to contribute to disease progression. In adult patients with 2 ventricles and heart failure, reduced exercise capacity, muscle mass, and muscle strength are powerful predictors of poor outcomes, and exercise interventions can not only improve exercise capacity and muscle mass, but also reverse endothelial dysfunction. Despite these known benefits of exercise, pediatric Fontan patients do not exercise routinely due to their chronic condition, perceived restrictions to exercise, and parental overprotection. Limited exercise interventions in children with congenital heart disease have demonstrated that exercise is safe and effective; however, these studies have been conducted in small, heterogeneous groups, and most had few Fontan patients. Critically, adherence is a major limitation in pediatric exercise interventions delivered on-site, with adherence rates as low as 10%, due to distance from site, transportation difficulties, and missed school or workdays. To overcome these challenges, we utilize live-video conferencing to deliver the supervised exercise sessions. Our multidisciplinary team of experts will assess the effectiveness of a live-video-supervised exercise intervention, rigorously designed to maximize adherence, and improve key and novel measures of health in pediatric Fontan patients associated with poor long-term outcomes. Our ultimate goal is the translation of this model to clinical application as an "exercise prescription" to intervene early in pediatric Fontan patients and decrease long-term morbidity and mortality.


Asunto(s)
Procedimiento de Fontan , Cardiopatías Congénitas , Insuficiencia Cardíaca , Trasplante de Corazón , Adulto , Recién Nacido , Humanos , Niño , Ejercicio Físico/fisiología , Terapia por Ejercicio , Fuerza Muscular , Prueba de Esfuerzo
9.
Skeletal Radiol ; 52(11): 2159-2183, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36646851

RESUMEN

Imaging of the joint in response to loading stress may provide additional measures of joint structure and function beyond conventional, static imaging studies. Exercise such as running, stair climbing, and squatting allows evaluation of the joint response to larger loading forces than during weight bearing. Quantitative MRI (qMRI) may assess properties of cartilage and meniscus hydration and organization in vivo that have been investigated to assess the functional response of these tissues to physiological stress. [18F]sodium fluoride ([18F]NaF) interrogates areas of newly mineralizing bone and provides an opportunity to study bone physiology, including perfusion and mineralization rate, as a measure of joint loading stress. In this review article, methods utilizing quantitative MRI, PET, and hybrid PET-MRI systems for assessment of the joint response to loading from exercise in vivo are examined. Both methodology and results of various studies performed are outlined and discussed. Lastly, the technical considerations, challenges, and future opportunities for these approaches are addressed.


Asunto(s)
Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Humanos , Tomografía de Emisión de Positrones/métodos , Imagen por Resonancia Magnética/métodos , Cartílago , Huesos
10.
PET Clin ; 18(1): 21-29, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36442963

RESUMEN

Osteoarthritis is a common cause of pain and morbidity resulting in heavy economic burden and large societal costs. Although cross-sectional imaging and in particular MR imaging have largely contributed to a better understanding of the complexity of this complex disease, especially in large joints such as the hip and knee joints, metabolic information of the subchondral bone and periarticular synovial environment has been consistently suggested to provide valuable supplemental information to morphologic and compositional MR imaging. The aim of this narrative review is to provide an overview of the role of the hybrid PET imaging in osteoarthritis with particular focus on PET/MR imaging.


Asunto(s)
Osteoartritis , Tomografía de Emisión de Positrones , Humanos , Osteoartritis/diagnóstico por imagen , Imagen Multimodal , Dolor
11.
J Magn Reson Imaging ; 57(4): 1029-1039, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35852498

RESUMEN

BACKGROUND: Deep learning (DL)-based automatic segmentation models can expedite manual segmentation yet require resource-intensive fine-tuning before deployment on new datasets. The generalizability of DL methods to new datasets without fine-tuning is not well characterized. PURPOSE: Evaluate the generalizability of DL-based models by deploying pretrained models on independent datasets varying by MR scanner, acquisition parameters, and subject population. STUDY TYPE: Retrospective based on prospectively acquired data. POPULATION: Overall test dataset: 59 subjects (26 females); Study 1: 5 healthy subjects (zero females), Study 2: 8 healthy subjects (eight females), Study 3: 10 subjects with osteoarthritis (eight females), Study 4: 36 subjects with various knee pathology (10 females). FIELD STRENGTH/SEQUENCE: A 3-T, quantitative double-echo steady state (qDESS). ASSESSMENT: Four annotators manually segmented knee cartilage. Each reader segmented one of four qDESS datasets in the test dataset. Two DL models, one trained on qDESS data and another on Osteoarthritis Initiative (OAI)-DESS data, were assessed. Manual and automatic segmentations were compared by quantifying variations in segmentation accuracy, volume, and T2 relaxation times for superficial and deep cartilage. STATISTICAL TESTS: Dice similarity coefficient (DSC) for segmentation accuracy. Lin's concordance correlation coefficient (CCC), Wilcoxon rank-sum tests, root-mean-squared error-coefficient-of-variation to quantify manual vs. automatic T2 and volume variations. Bland-Altman plots for manual vs. automatic T2 agreement. A P value < 0.05 was considered statistically significant. RESULTS: DSCs for the qDESS-trained model, 0.79-0.93, were higher than those for the OAI-DESS-trained model, 0.59-0.79. T2 and volume CCCs for the qDESS-trained model, 0.75-0.98 and 0.47-0.95, were higher than respective CCCs for the OAI-DESS-trained model, 0.35-0.90 and 0.13-0.84. Bland-Altman 95% limits of agreement for superficial and deep cartilage T2 were lower for the qDESS-trained model, ±2.4 msec and ±4.0 msec, than the OAI-DESS-trained model, ±4.4 msec and ±5.2 msec. DATA CONCLUSION: The qDESS-trained model may generalize well to independent qDESS datasets regardless of MR scanner, acquisition parameters, and subject population. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.


Asunto(s)
Cartílago Articular , Aprendizaje Profundo , Osteoartritis de la Rodilla , Femenino , Humanos , Estudios Retrospectivos , Cartílago Articular/patología , Imagen por Resonancia Magnética/métodos , Algoritmos , Osteoartritis de la Rodilla/patología
13.
Magn Reson Med ; 89(2): 577-593, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36161727

RESUMEN

PURPOSE: To develop and validate a method for B 0 $$ {B}_0 $$ mapping for knee imaging using the quantitative Double-Echo in Steady-State (qDESS) exploiting the phase difference ( Δ Î¸ $$ \Delta \theta $$ ) between the two echoes acquired. Contrary to a two-gradient-echo (2-GRE) method, Δ Î¸ $$ \Delta \theta $$ depends only on the first echo time. METHODS: Bloch simulations were applied to investigate robustness to noise of the proposed methodology and all imaging studies were validated with phantoms and in vivo simultaneous bilateral knee acquisitions. Two phantoms and five healthy subjects were scanned using qDESS, water saturation shift referencing (WASSR), and multi-GRE sequences. Δ B 0 $$ \Delta {B}_0 $$ maps were calculated with the qDESS and the 2-GRE methods and compared against those obtained with WASSR. The comparison was quantitatively assessed exploiting pixel-wise difference maps, Bland-Altman (BA) analysis, and Lin's concordance coefficient ( ρ c $$ {\rho}_c $$ ). For in vivo subjects, the comparison was assessed in cartilage using average values in six subregions. RESULTS: The proposed method for measuring Δ B 0 $$ \Delta {B}_0 $$ inhomogeneities from a qDESS acquisition provided Δ B 0 $$ \Delta {B}_0 $$ maps that were in good agreement with those obtained using WASSR. Δ B 0 $$ \Delta {B}_0 $$ ρ c $$ {\rho}_c $$ values were ≥ $$ \ge $$ 0.98 and 0.90 in phantoms and in vivo, respectively. The agreement between qDESS and WASSR was comparable to that of a 2-GRE method. CONCLUSION: The proposed method may allow B0 correction for qDESS T 2 $$ {T}_2 $$ mapping using an inherently co-registered Δ B 0 $$ \Delta {B}_0 $$ map without requiring an additional B0 measurement sequence. More generally, the method may help shorten knee imaging protocols that require an auxiliary Δ B 0 $$ \Delta {B}_0 $$ map by exploiting a qDESS acquisition that also provides T 2 $$ {T}_2 $$ measurements and high-quality morphological imaging.


Asunto(s)
Rodilla , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Rodilla/diagnóstico por imagen , Articulación de la Rodilla/diagnóstico por imagen , Agua
14.
Ther Adv Musculoskelet Dis ; 14: 1759720X221146621, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36601087

RESUMEN

The osteoarthritis (OA) research community has been advocating a shift from radiography-based screening criteria and outcome measures in OA clinical trials to a magnetic resonance imaging (MRI)-based definition of eligibility and endpoint. For conventional morphological MRI, various semiquantitative evaluation tools are available. We have lately witnessed a remarkable technological advance in MRI techniques, including compositional/physiologic imaging and automated quantitative analyses of articular and periarticular structures. More recently, additional technologies were introduced, including positron emission tomography (PET)-MRI, weight-bearing computed tomography (CT), photon-counting spectral CT, shear wave elastography, contrast-enhanced ultrasound, multiscale X-ray phase contrast imaging, and spectroscopic photoacoustic imaging of cartilage. On top of these, we now live in an era in which artificial intelligence is increasingly utilized in medicine. Osteoarthritis imaging is no exception. Successful implementation of artificial intelligence (AI) will hopefully improve the workflow of radiologists, as well as the level of precision and reproducibility in the interpretation of images.

15.
AJR Am J Roentgenol ; 218(3): 405-417, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34286595

RESUMEN

Synovitis, inflammation of the synovial membrane, is a common manifestation of osteoarthritis (OA) and is recognized to play a role in the complex pathophysiology of OA. Increased recognition of the importance of synovitis in the OA disease process and its potential as a target for treatment has increased the need for noninvasive detection and characterization of synovitis using medical imaging. Numerous imaging methods can assess synovitis involvement in OA with varying sensitivity, specificity, and complexity. This article reviews the role of contrast-enhanced MRI, conventional MRI, novel unenhanced MRI, gray-scale ultrasound (US), and power Doppler US in the assessment of synovitis in patients with OA. The role of imaging in disease evaluation and the challenges of conventional imaging methods are discussed. We also provide an overview of the potential utility of emerging techniques for imaging of early inflammation and molecular inflammatory markers of synovitis, including quantitative MRI, superb microvascular imaging, and PET. The development of therapeutic treatments targeting inflammatory features, particularly in early OA, would greatly increase the importance of these imaging methods for clinical decision-making and evaluation of therapeutic efficacy.


Asunto(s)
Diagnóstico por Imagen/métodos , Inflamación/diagnóstico por imagen , Inflamación/etiología , Osteoartritis/complicaciones , Osteoartritis/diagnóstico por imagen , Membrana Sinovial/diagnóstico por imagen , Humanos , Inflamación/fisiopatología , Osteoartritis/fisiopatología , Membrana Sinovial/fisiopatología
16.
NMR Biomed ; 35(1): e4614, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34549476

RESUMEN

The dynamic contrast-enhanced (DCE)-MRI parameter Ktrans can quantify the intensity of synovial inflammation (synovitis) in knees with osteoarthritis (OA), but requires the use of gadolinium-based contrast agent (GBCA). Diffusion tensor imaging (DTI) measures the diffusion of water molecules with parameters mean diffusivity (MD) and fractional anisotropy (FA), and has been proposed as a method to detect synovial inflammation without the use of GBCA. The purpose of this study is to (1) determine the ability of DTI to quantify the intensity of synovitis in OA by comparing MD and FA with our imaging gold standard Ktrans within the synovium and (2) compare DTI and DCE-MRI measures with the semi-quantitative grading of OA severity with the Kellgren-Lawrence (KL) and MRI Osteoarthritis Knee Score (MOAKS) systems, in order to assess the relationship between synovitis intensity and OA severity. Within the synovium, MD showed a significant positive correlation with Ktrans (r = 0.79, p < 0.001), while FA showed a significant negative correlation with Ktrans (r = -0.72, p = 0.0026). These results show that DTI is able to quantify the intensity of synovitis within the whole synovium without the use of exogenous contrast agent. Additionally, MD, FA, and Ktrans values did not vary significantly when knees were separated by KL grade (p = 0.15, p = 0.32, p = 0.41, respectively), while MD (r = 0.60, p = 0.018) and Ktrans (r = 0.62, p = 0.013) had a significant positive correlation and FA (r = -0.53, p = 0.043) had a negative correlation with MOAKS. These comparisons indicate that quantitative measures of the intensity of synovitis may provide information in addition to morphological assessment to evaluate OA severity. Using DTI to quantify the intensity of synovitis without GBCA may be helpful to facilitate a broader clinical assessment of the severity of OA.


Asunto(s)
Imagen de Difusión Tensora/métodos , Osteoartritis de la Rodilla/diagnóstico por imagen , Sinovitis/diagnóstico por imagen , Adulto , Anciano , Medios de Contraste , Estudios Transversales , Femenino , Gadolinio , Humanos , Aumento de la Imagen , Masculino , Persona de Mediana Edad , Relación Señal-Ruido
17.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34298936

RESUMEN

Nuclear Magnetic Resonance (NMR) is a well-suited methodology to study bone composition and structural properties. This is because the NMR parameters, such as the T2 relaxation time, are sensitive to the chemical and physical environment of the 1H nuclei. Although magnetic resonance imaging (MRI) allows bone structure assessment in vivo, its cost limits the suitability of conventional MRI for routine bone screening. With difficulty accessing clinically suitable exams, the diagnosis of bone diseases, such as osteoporosis, and the associated fracture risk estimation is based on the assessment of bone mineral density (BMD), obtained by the dual-energy X-ray absorptiometry (DXA). However, integrating the information about the structure of the bone with the bone mineral density has been shown to improve fracture risk estimation related to osteoporosis. Portable NMR, based on low-field single-sided NMR devices, is a promising and appealing approach to assess NMR properties of biological tissues with the aim of medical applications. Since these scanners detect the signal from a sensitive volume external to the magnet, they can be used to perform NMR measurement without the need to fit a sample inside a bore of a magnet, allowing, in principle, in vivo application. Techniques based on NMR single-sided devices have the potential to provide a high impact on the clinical routine because of low purchasing and running costs and low maintenance of such scanners. In this review, the development of new methodologies to investigate structural properties of trabecular bone exploiting single-sided NMR devices is reviewed, and current limitations and future perspectives are discussed.


Asunto(s)
Enfermedades Óseas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Absorciometría de Fotón/métodos , Animales , Densidad Ósea/fisiología , Hueso Esponjoso/diagnóstico por imagen , Fracturas Óseas/diagnóstico por imagen , Humanos , Osteoporosis/diagnóstico por imagen
18.
Eur Radiol ; 31(12): 9369-9379, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33993332

RESUMEN

OBJECTIVES: To determine whether synovitis graded by radiologists using hybrid quantitative double-echo in steady-state (qDESS) images can be utilized as a non-contrast approach to assess synovitis in the knee, compared against the reference standard of contrast-enhanced MRI (CE-MRI). METHODS: Twenty-two knees (11 subjects) with moderate to severe osteoarthritis (OA) were scanned using CE-MRI, qDESS with a high diffusion weighting (qDESSHigh), and qDESS with a low diffusion weighting (qDESSLow). Four radiologists graded the overall impression of synovitis, their diagnostic confidence, and regional grading of synovitis severity at four sites (suprapatellar pouch, intercondylar notch, and medial and lateral peripatellar recesses) in the knee using a 4-point scale. Agreement between CE-MRI and qDESS, inter-rater agreement, and intra-rater agreement were assessed using a linearly weighted Gwet's AC2. RESULTS: Good agreement was seen between CE-MRI and both qDESSLow (AC2 = 0.74) and qDESSHigh (AC2 = 0.66) for the overall impression of synovitis, but both qDESS sequences tended to underestimate the severity of synovitis compared to CE-MRI. Good inter-rater agreement was seen for both qDESS sequences (AC2 = 0.74 for qDESSLow, AC2 = 0.64 for qDESSHigh), and good intra-rater agreement was seen for both sequences as well (qDESSLow AC2 = 0.78, qDESSHigh AC2 = 0.80). Diagnostic confidence was moderate to high for qDESSLow (mean = 2.36) and slightly less than moderate for qDESSHigh (mean = 1.86), compared to mostly high confidence for CE-MRI (mean = 2.73). CONCLUSIONS: qDESS shows potential as an alternative MRI technique for assessing the severity of synovitis without the use of a gadolinium-based contrast agent. KEY POINTS: The use of the quantitative double-echo in steady-state (qDESS) sequence for synovitis assessment does not require the use of a gadolinium-based contrast agent. Preliminary results found that low diffusion-weighted qDESS (qDESSLow) shows good agreement to contrast-enhanced MRI for characterization of the severity of synovitis, with a relative bias towards underestimation of severity. Preliminary results also found that qDESSLow shows good inter- and intra-rater agreement for the depiction of synovitis, particularly for readers experienced with the sequence.


Asunto(s)
Osteoartritis de la Rodilla , Sinovitis , Medios de Contraste , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Imagen por Resonancia Magnética , Osteoartritis de la Rodilla/diagnóstico por imagen , Membrana Sinovial , Sinovitis/diagnóstico por imagen
19.
J Magn Reson Imaging ; 54(3): 840-851, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33763929

RESUMEN

BACKGROUND: Injuries to the articular cartilage in the knee are common in jumping athletes, particularly high-level basketball players. Unfortunately, these are often diagnosed at a late stage of the disease process, after tissue loss has already occurred. PURPOSE/HYPOTHESIS: To evaluate longitudinal changes in knee articular cartilage and knee function in National Collegiate Athletic Association (NCAA) basketball players and their evolution over the competitive season and off-season. STUDY TYPE: Longitudinal, multisite cohort study. POPULATION: Thirty-two NCAA Division 1 athletes: 22 basketball players and 10 swimmers. FIELD STRENGTH/SEQUENCE: Bilateral magnetic resonance imaging (MRI) using a combined T1ρ and T2 magnetization-prepared angle-modulated portioned k-space spoiled gradient-echo snapshots (MAPSS) sequence at 3T. ASSESSMENT: We calculated T2 and T1ρ relaxation times to compare compositional cartilage changes between three timepoints: preseason 1, postseason 1, and preseason 2. Knee Osteoarthritis Outcome Scores (KOOS) were used to assess knee health. STATISTICAL TESTS: One-way variance model hypothesis test, general linear model, and chi-squared test. RESULTS: In the femoral articular cartilage of all athletes, we saw a global decrease in T2 and T1ρ relaxation times during the competitive season (all P < 0.05) and an increase in T2 and T1ρ relaxation times during the off-season (all P < 0.05). In the basketball players' femoral cartilage, the anterior and central compartments respectively had the highest T2 and T1ρ relaxation times following the competitive season and off-season. The basketball players had significantly lower KOOS measures in every domain compared with the swimmers: Pain (P < 0.05), Symptoms (P < 0.05), Function in Daily Living (P < 0.05), Function in Sport/Recreation (P < 0.05), and Quality of Life (P < 0.05). CONCLUSION: Our results indicate that T2 and T1ρ MRI can detect significant seasonal changes in the articular cartilage of basketball players and that there are regional differences in the articular cartilage that are indicative of basketball-specific stress on the femoral cartilage. This study demonstrates the potential of quantitative MRI to monitor global and regional cartilage health in athletes at risk of developing cartilage problems. LEVEL OF EVIDENCE: 2 Technical Efficacy Stage: 2.


Asunto(s)
Baloncesto , Cartílago Articular , Osteoartritis de la Rodilla , Cartílago Articular/diagnóstico por imagen , Estudios de Cohortes , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Imagen por Resonancia Magnética , Calidad de Vida , Estaciones del Año
20.
Front Neurol ; 12: 608549, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33658976

RESUMEN

Diffusion tensor imaging (DTI) measures water diffusion in skeletal muscle tissue and allows for muscle assessment in a broad range of neuromuscular diseases. However, current DTI measurements, typically performed using pulsed gradient spin echo (PGSE) diffusion encoding, are limited to the assessment of non-contracted musculature, therefore providing limited insight into muscle contraction mechanisms and contraction abnormalities. In this study, we propose the use of an oscillating gradient spin echo (OGSE) diffusion encoding strategy for DTI measurements to mitigate the effect of signal voids in contracted muscle and to obtain reliable diffusivity values. Two OGSE sequences with encoding frequencies of 25 and 50 Hz were tested in the lower leg of five healthy volunteers with relaxed musculature and during active dorsiflexion and plantarflexion, and compared with a conventional PGSE approach. A significant reduction of areas of signal voids using OGSE compared with PGSE was observed in the tibialis anterior for the scans obtained in active dorsiflexion and in the soleus during active plantarflexion. The use of PGSE sequences led to unrealistically elevated axial diffusivity values in the tibialis anterior during dorsiflexion and in the soleus during plantarflexion, while the corresponding values obtained using the OGSE sequences were significantly reduced. Similar findings were seen for radial diffusivity, with significantly higher diffusivity measured in plantarflexion in the soleus muscle using the PGSE sequence. Our preliminary results indicate that DTI with OGSE diffusion encoding is feasible in human musculature and allows to quantitatively assess diffusion properties in actively contracting skeletal muscle. OGSE holds great potential to assess microstructural changes occurring in the skeletal muscle during contraction, and for non-invasive assessment of contraction abnormalities in patients with muscle diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...