Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Bioorg Chem ; 151: 107681, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39106711

RESUMEN

Aberrant activation of the Hedgehog (Hh) signalling pathway has been associated with the development and progression of pancreatic cancer. For this reason, blockade of Hh pathway by inhibitors targeting the G protein-coupled receptor Smoothened (SMO) has been considered as a therapeutic target for the treatment of this cancer. In our previous work, we obtained a new SMO ligand based on a purine scaffold (compound I), which showed interesting antitumor activity in several cancer cell lines. In this work, we report the design and synthesis of 17 new purine derivatives, some of which showed high cytotoxic effect on Mia-PaCa-2 (Hh-dependent pancreatic cancer cell lines) and low toxicity on non-neoplastic HEK-293 cells compared with gemcitabine, such as 8f, 8g and 8h (IC50 = 4.56, 4.11 and 3.08 µM, respectively). Two of these purines also showed their ability to bind to SMO through NanoBRET assays (pKi = 5.17 for 8f and 5.01 for 8h), with higher affinities to compound I (pKi = 1.51). In addition, docking studies provided insight the purine substitution pattern is related to the affinity on SMO. Finally, studies of Hh inhibition for selected purines, using a transcriptional functional assay based on luciferase activity in NIH3T3 Shh-Light II cells, demonstrated that 8g reduced GLI activity with a IC50 = 6.4 µM as well as diminished the expression of Hh target genes in two specific Hh-dependent cell models, Med1 cells and Ptch1-/- mouse embryonic fibroblasts. Therefore, our results provide a platform for the design of SMO ligands that could be potential selective cytotoxic agents for the treatment of pancreatic cancer.

2.
Int J Pharm ; 662: 124507, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39048041

RESUMEN

Epigallocatechin-3-gallate (EGCG) exhibits several pharmacological activities with potential benefits for human health, however, it has low oral bioavailability. A promising approach is to transport EGCG in a nanostructured system to protect it until it reaches the site of action and also allow combining chemotherapy with phototherapy to improve its therapeutic efficiency. The aim of this work was to synthesize GNR@mSiO2-NH2/EGCG and characterize the adsorption process, its antioxidant activity, properties and photothermal stability, for its potential use in chemo-photothermal therapy. The nanosystem presented good encapsulation efficiency (19.2 %) and EGCG loading capacity (6.0 %). The DPPH• free radical scavenging capacity (RSA) and chelating activity of the nanosystem was 60.7 ± 6.9 % and 71.0 ± 6.4 % at an EGCG equivalent concentration of 1 µg/mL and 30 µg/mL, respectively. The core-shell NPs presented a good photothermal transduction efficiency of 17 %. EGCG free, as well as its RSA and chelating activity, remained stable after NIR irradiation (808 nm, 7 W/cm2). The morphology of GNR@mSiO2 remained intact after being irradiated with NIR, however, ultrasmall gold NPs could be observed, probably a product of photocracking of GNR. In summary, the nanosystem has good antioxidant activity, photothermal stability, and photothermal transduction ability making it potentially useful for chemo-photothermal therapy.

3.
Pharmaceutics ; 16(7)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39065553

RESUMEN

Core-shell micro/nanomotors have garnered significant interest in biomedicine owing to their versatile task-performing capabilities. However, their effectiveness for photothermal therapy (PTT) still faces challenges because of their poor tumor accumulation, lower light-to-heat conversion, and due to the limited penetration of near-infrared (NIR) light. In this study, we present a novel core-shell micromotor that combines magnetic and photothermal properties. It is synthesized via the template-assisted electrodeposition of iron (Fe) and reduced graphene oxide (rGO) on a microtubular pore-shaped membrane. The resulting Fe-rGO micromotor consists of a core of oval-shaped zero-valent iron nanoparticles with large magnetization. At the same time, the outer layer has a uniform reduced graphene oxide (rGO) topography. Combined, these Fe-rGO core-shell micromotors respond to magnetic forces and near-infrared (NIR) light (1064 nm), achieving a remarkable photothermal conversion efficiency of 78% at a concentration of 434 µg mL-1. They can also carry doxorubicin (DOX) and rapidly release it upon NIR irradiation. Additionally, preliminary results regarding the biocompatibility of these micromotors through in vitro tests on a 3D breast cancer model demonstrate low cytotoxicity and strong accumulation. These promising results suggest that such Fe-rGO core-shell micromotors could hold great potential for combined photothermal therapy.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39078396

RESUMEN

Inflammation is an important physiological response of the organism to restore homeostasis upon pathogenic or damaging stimuli. However, persistence of the harmful trigger, or a deficient resolution of the process can evolve into a state of low-grade, chronic inflammation. This condition is strongly associated to the development of several increasingly prevalent and serious chronic conditions such as obesity, cancer and cardiovascular diseases, elevating overall morbidity and mortality worldwide. The current pandemic of chronic diseases underscores the need to address chronic inflammation, its pathogenic mechanisms and potential preventive measures to limit its current widespread impact. The present review discusses the current knowledge and research gaps regarding the association between low-grade chronic inflammation and chronic diseases, focusing on obesity, cardiovascular diseases, digestive diseases and cancer. We examine the state-of-the-art in selected aspects of the topic, and propose future directions and approaches for the field.

5.
J Nanobiotechnology ; 22(1): 248, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741193

RESUMEN

The use of nanomaterials in medicine offers multiple opportunities to address neurodegenerative disorders such as Alzheimer's and Parkinson's disease. These diseases are a significant burden for society and the health system, affecting millions of people worldwide without sensitive and selective diagnostic methodologies or effective treatments to stop their progression. In this sense, the use of gold nanoparticles is a promising tool due to their unique properties at the nanometric level. They can be functionalized with specific molecules to selectively target pathological proteins such as Tau and α-synuclein for Alzheimer's and Parkinson's disease, respectively. Additionally, these proteins are used as diagnostic biomarkers, wherein gold nanoparticles play a key role in enhancing their signal, even at the low concentrations present in biological samples such as blood or cerebrospinal fluid, thus enabling an early and accurate diagnosis. On the other hand, gold nanoparticles act as drug delivery platforms, bringing therapeutic agents directly into the brain, improving treatment efficiency and precision, and reducing side effects in healthy tissues. However, despite the exciting potential of gold nanoparticles, it is crucial to address the challenges and issues associated with their use in the medical field before they can be widely applied in clinical settings. It is critical to ensure the safety and biocompatibility of these nanomaterials in the context of the central nervous system. Therefore, rigorous preclinical and clinical studies are needed to assess the efficacy and feasibility of these strategies in patients. Since there is scarce and sometimes contradictory literature about their use in this context, the main aim of this review is to discuss and analyze the current state-of-the-art of gold nanoparticles in relation to delivery, diagnosis, and therapy for Alzheimer's and Parkinson's disease, as well as recent research about their use in preclinical, clinical, and emerging research areas.


Asunto(s)
Oro , Nanopartículas del Metal , Enfermedades Neurodegenerativas , alfa-Sinucleína , Proteínas tau , Humanos , Oro/química , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Proteínas tau/metabolismo , Animales , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/diagnóstico , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/diagnóstico , Sistemas de Liberación de Medicamentos/métodos , Biomarcadores
6.
Artículo en Inglés | MEDLINE | ID: mdl-38640460

RESUMEN

A ß-cyclodextrin (ß-CD) nanosponge (NS) was synthesized using diphenyl carbonate (DPC) as a cross-linker to encapsulate the antitumor drug cyclophosphamide (CYC), thus obtaining the NSs-CYC system. The formulation was then associated with magnetite nanoparticles (MNPs) to develop the MNPs-NSs-CYC ternary system. The formulations mentioned above were characterized to confirm the deposition of the MNPs onto the organic matrix and that the superparamagnetic nature of the MNPs was preserved upon association. The association of the MNPs with the NSs-drug complex was confirmed through field emission scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, dynamic light scattering, ζ-potential, atomic absorption spectroscopy, X-ray powder diffraction, selected area electron diffraction, and vibrating-sample magnetometer. The superparamagnetic properties of the ternary system allowed the release of CYC by utilizing magnetic hyperthermia upon the exposure of an alternating magnetic field (AMF). The drug release experiments were carried out at different frequencies and intensities of the magnetic field, complying with the "Atkinson-Brezovich criterion". The assays in AMF showed the feasibility of release by controlling hyperthermia of the drug, finding that the most efficient conditions were F = 280 kHz, H = 15 mT, and a concentration of MNPs of 5 mg/mL. CYC release was temperature-dependent, facilitated by local heat generation through magnetic hyperthermia. This phenomenon was confirmed by DFT calculations. Furthermore, the ternary systems outperformed the formulations without MNPs regarding the amount of released drug. The MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assays demonstrated that including CYC within the magnetic NS cavities reduced the effects on mitochondrial activity compared to those observed with the free drug. Finally, the magnetic hyperthermia assays showed that the tertiary system allows the generation of apoptosis in HeLa cells, demonstrating that the MNPs embedded maintain their properties to generate hyperthermia. These results suggest that using NSs associated with MNPs could be a potential tool for a controlled drug delivery in tumor therapy since the materials are efficient and potentially nontoxic.

8.
Materials (Basel) ; 16(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37176420

RESUMEN

This work aimed to synthesize and characterize a nanocarrier that consisted of a ternary system, namely ß-cyclodextrin-based nanosponge (NS) inclusion compounds (ICs) associated with silver nanoparticles (AgNPs) to increase the antimicrobial activity of quercetin (QRC). The nanosystem was developed to overcome the therapeutical limitations of QRC. The host-guest interaction between NSs and QRC was confirmed by field emission scanning electron microscopy (FE-SEM), X-ray powder diffraction (XRPD), thermogravimetric analysis (TGA), and proton nuclear magnetic resonance (1H-NMR). Moreover, the association of AgNPs with the NS-QRC was characterized using FE-SEM, energy-dispersive spectroscopy (EDS), transmission electron microscopy (TEM), dynamic light scattering (DLS), ζ-potential, and UV-Vis. Finally, the antimicrobial activity of the novel formulations was tested, which depicted that the complexation of QRC inside the supramolecular interstices of NSs increases the inhibitory effects against Escherichia coli ATCC25922, as compared to that observed in the free QRC. In addition, at the same concentrations used to generate an antibacterial effect, the NS-QRC system with AgNPs does not affect the metabolic activity of GES-1 cells. Therefore, these results suggest that the use of NSs associated with AgNPs resulted in an efficient strategy to improve the physicochemical features of QRC.

9.
J Neuroinflammation ; 20(1): 66, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36895046

RESUMEN

BACKGROUND: Helicobacter pylori (Hp) infects the stomach of 50% of the world's population. Importantly, chronic infection by this bacterium correlates with the appearance of several extra-gastric pathologies, including neurodegenerative diseases. In such conditions, brain astrocytes become reactive and neurotoxic. However, it is still unclear whether this highly prevalent bacterium or the nanosized outer membrane vesicles (OMVs) they produce, can reach the brain, thus affecting neurons/astrocytes. Here, we evaluated the effects of Hp OMVs on astrocytes and neurons in vivo and in vitro. METHODS: Purified OMVs were characterized by mass spectrometry (MS/MS). Labeled OMVs were administered orally or injected into the mouse tail vein to study OMV-brain distribution. By immunofluorescence of tissue samples, we evaluated: GFAP (astrocytes), ßIII tubulin (neurons), and urease (OMVs). The in vitro effect of OMVs in astrocytes was assessed by monitoring NF-κB activation, expression of reactivity markers, cytokines in astrocyte-conditioned medium (ACM), and neuronal cell viability. RESULTS: Urease and GroEL were prominent proteins in OMVs. Urease (OMVs) was present in the mouse brain and its detection coincided with astrocyte reactivity and neuronal damage. In vitro, OMVs induced astrocyte reactivity by increasing the intermediate filament proteins GFAP and vimentin, the plasma membrane αVß3 integrin, and the hemichannel connexin 43. OMVs also produced neurotoxic factors and promoted the release of IFNγ in a manner dependent on the activation of the transcription factor NF-κB. Surface antigens on reactive astrocytes, as well as secreted factors in response to OMVs, were shown to inhibit neurite outgrowth and damage neurons. CONCLUSIONS: OMVs administered orally or injected into the mouse bloodstream reach the brain, altering astrocyte function and promoting neuronal damage in vivo. The effects of OMVs on astrocytes were confirmed in vitro and shown to be NF-κB-dependent. These findings suggest that Hp could trigger systemic effects by releasing nanosized vesicles that cross epithelial barriers and access the CNS, thus altering brain cells.


Asunto(s)
Helicobacter pylori , Ratones , Animales , Helicobacter pylori/metabolismo , Astrocitos , Ureasa/metabolismo , Ureasa/farmacología , FN-kappa B/metabolismo , Factor B del Complemento/metabolismo , Factor B del Complemento/farmacología , Modelos Animales de Enfermedad , Espectrometría de Masas en Tándem , Neuronas
10.
J Nanobiotechnology ; 21(1): 115, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36978078

RESUMEN

BACKGROUND: The lack of predictive models that mimic the blood-brain barrier (BBB) hinders the development of effective drugs for neurodegenerative diseases. Animal models behave differently from humans, are expensive and have ethical constraints. Organ-on-a-chip (OoC) platforms offer several advantages to resembling physiological and pathological conditions in a versatile, reproducible, and animal-free manner. In addition, OoC give us the possibility to incorporate sensors to determine cell culture features such as trans-endothelial electrical resistance (TEER). Here, we developed a BBB-on-a-chip (BBB-oC) platform with a TEER measurement system in close distance to the barrier used for the first time for the evaluation of the permeability performance of targeted gold nanorods for theranostics of Alzheimer's disease. GNR-PEG-Ang2/D1 is a therapeutic nanosystem previously developed by us consisting of gold nanorods (GNR) functionalized with polyethylene glycol (PEG), angiopep-2 peptide (Ang2) to overcome the BBB and the D1 peptide as beta amyloid fibrillation inhibitor, finally obtaining GNR-PEG-Ang2/D1 which showed to be useful for disaggregation of the amyloid in in vitro and in vivo models. In this work, we evaluated its cytotoxicity, permeability, and some indications of its impact on the brain endothelium by employing an animal-free device based on neurovascular human cells. RESULTS: In this work, we fabricated a BBB-oC with human astrocytes, pericytes and endothelial cells and a TEER measuring system (TEER-BBB-oC) integrated at a micrometric distance of the endothelial barrier. The characterization displayed a neurovascular network and the expression of tight junctions in the endothelium. We produced GNR-PEG-Ang2/D1 and determined its non-cytotoxic range (0.05-0.4 nM) for plated cells included in the BBB-oC and confirmed its harmless effect at the highest concentration (0.4 nM) in the microfluidic device. The permeability assays revealed that GNR-PEG-Ang2/D1 cross the BBB and this entry is facilitated by Ang2 peptide. Parallel to the permeability analysis of GNR-PEG-Ang2/D1, an interesting behavior of the TJs expression was observed after its administration probably related to the ligands on the nanoparticle surface. CONCLUSIONS: BBB-oC with a novel TEER integrated setup which allow a correct read-out and cell imaging monitoring was proven as a functional and throughput platform to evaluate the brain permeability performance of nanotherapeutics in a physiological environment with human cells, putting forward a viable alternative to animal experimentation.


Asunto(s)
Enfermedad de Alzheimer , Barrera Hematoencefálica , Humanos , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Impedancia Eléctrica , Oro/farmacología , Astrocitos/metabolismo , Péptidos beta-Amiloides/metabolismo , Endotelio/metabolismo , Permeabilidad , Dispositivos Laboratorio en un Chip
11.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36835401

RESUMEN

Melphalan (Mel) is an antineoplastic widely used in cancer and other diseases. Its low solubility, rapid hydrolysis, and non-specificity limit its therapeutic performance. To overcome these disadvantages, Mel was included in ß-cyclodextrin (ßCD), which is a macromolecule that increases its aqueous solubility and stability, among other properties. Additionally, the ßCD-Mel complex has been used as a substrate to deposit silver nanoparticles (AgNPs) through magnetron sputtering, forming the ßCD-Mel-AgNPs crystalline system. Different techniques showed that the complex (stoichiometric ratio 1:1) has a loading capacity of 27%, an association constant of 625 M-1, and a degree of solubilization of 0.034. Added to this, Mel is partially included, exposing the NH2 and COOH groups that stabilize AgNPs in the solid state, with an average size of 15 ± 3 nm. Its dissolution results in a colloidal solution of AgNPs covered by multiple layers of the ßCD-Mel complex, with a hydrodynamic diameter of 116 nm, a PDI of 0.4, and a surface charge of 19 mV. The in vitro permeability assays show that the effective permeability of Mel increased using ßCD and AgNPs. This novel nanosystem based on ßCD and AgNPs is a promising candidate as a Mel nanocarrier for cancer therapy.


Asunto(s)
Nanopartículas del Metal , beta-Ciclodextrinas , Melfalán , Plata , beta-Ciclodextrinas/química , Solubilidad
12.
Pharmaceutics ; 15(2)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36839779

RESUMEN

Dacarbazine (DB) is an antineoplastic drug extensively used in cancer therapy. However, present limitations on its performance are related to its low solubility, instability, and non-specificity. To overcome these drawbacks, DB was included in ß-cyclodextrin (ßCD), which increased its aqueous solubility and stability. This new ßCD@DB complex has been associated with plasmonic gold nanoparticles (AuNPs), and polyethylene glycol (PEG) has been added in the process to increase the colloidal stability and biocompatibility. Different techniques revealed that DB allows for a dynamic inclusion into ßCD, with an association constant of 80 M-1 and a degree of solubilization of 0.023, where ßCD showed a loading capacity of 16%. The partial exposure of the NH2 group in the included DB allows its interaction with AuNPs, with a loading efficiency of 99%. The PEG-AuNPs-ßCD@DB nanosystem exhibits an optical plasmonic absorption at 525 nm, a surface charge of -29 mV, and an average size of 12 nm. Finally, laser irradiation assays showed that DB can be released from this platform in a controlled manner over time, reaching a concentration of 56 µg/mL (43% of the initially loaded amount), which, added to the previous data, validates its potential for drug delivery applications. Therefore, the novel nanosystem based on ßCD, AuNPs, and PEG is a promising candidate as a new nanocarrier for DB.

13.
Int J Nanomedicine ; 18: 8169-8185, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38169997

RESUMEN

Introduction: The development of new materials and tools for radiology is key to the implementation of this diagnostic technique in clinics. In this work, we evaluated the differential accumulation of peptide-functionalized GNRs in a transgenic animal model (APPswe/PSENd1E9) of Alzheimer's disease (AD) by computed tomography (CT) and measured the pharmacokinetic parameters and bioaccumulation of the nanosystem. Methods: The GNRs were functionalized with two peptides, Ang2 and D1, which conferred on them the properties of crossing the blood-brain barrier and binding to amyloid aggregates, respectively, thus making them a diagnostic tool with great potential for AD. The nanosystem was administered intravenously in APPswe/PSEN1dE9 model mice of 4-, 8- and 18-months of age, and the accumulation of gold nanoparticles was observed by computed tomography (CT). The gold accumulation and biodistribution were determined by atomic absorption. Results: Our findings indicated that 18-month-old animals treated with our nanosystem (GNR-D1/Ang2) displayed noticeable differences in CT signals compared to those treated with a control nanosystem (GNR-Ang2). However, no such distinctions were observed in younger animals. This suggests that our nanosystem holds the potential to effectively detect AD pathology. Discussion: These results support the future development of gold nanoparticle-based technology as a more effective and accessible alternative for the diagnosis of AD and represent a significant advance in the development of gold nanoparticle applications in disease diagnosis.


Asunto(s)
Enfermedad de Alzheimer , Nanopartículas del Metal , Nanotubos , Ratones , Animales , Oro/química , Bioacumulación , Distribución Tisular , Nanopartículas del Metal/química , Péptidos/química , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Amiloide/metabolismo , Tomografía Computarizada por Rayos X , Nanotubos/química , Tomografía , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad , Encéfalo/metabolismo
14.
Pharmaceutics ; 14(10)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36297642

RESUMEN

This article describes the synthesis and characterization of two nanocarriers consisting of ß-cyclodextrin-based nanosponges (NSs) inclusion compounds (ICs) and gold nanorods (AuNRs) for potential near-infrared II (NIR-II) drug-delivery systems. These nanosystems sought to improve the stability of two drugs, namely melphalan (MPH) and curcumin (CUR), and to trigger their photothermal release after a laser irradiation stimulus (1064 nm). The inclusion of MPH and CUR inside each NS was confirmed by field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, Fourier transform infrared spectroscopy, (FT-IR) differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and proton nuclear magnetic resonance (1H-NMR). Furthermore, the association of AuNRs with both ICs was confirmed by FE-SEM, energy-dispersive spectroscopy (EDS), TEM, dynamic light scattering (DLS), ζ-potential, and UV-Vis. Moreover, the irradiation assays demonstrated the feasibility of the controlled-photothermal drug release of both MPH and CUR in the second biological window (1000-1300 nm). Finally, MTS assays depicted that the inclusion of MPH and CUR inside the cavities of NSs reduces the effects on mitochondrial activity, as compared to that observed in the free drugs. Overall, these results suggest the use of NSs associated with AuNRs as a potential technology of controlled drug delivery in tumor therapy, since they are efficient and non-toxic materials.

15.
Fluids Barriers CNS ; 19(1): 60, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35879759

RESUMEN

Extracellular vesicles (EVs) are particles naturally released from cells that are delimited by a lipid bilayer and are unable to replicate. How the EVs cross the Blood-Brain barrier (BBB) in a bidirectional manner between the bloodstream and brain parenchyma remains poorly understood. Most in vitro models that have evaluated this event have relied on monolayer transwell or microfluidic organ-on-a-chip techniques that do not account for the combined effect of all cellular layers that constitute the BBB at different sites of the Central Nervous System. There has not been direct transcytosis visualization through the BBB in mammals in vivo, and evidence comes from in vivo experiments in zebrafish. Literature is scarce on this topic, and techniques describing the mechanisms of EVs motion through the BBB are inconsistent. This review will focus on in vitro and in vivo methodologies used to evaluate EVs transcytosis, how EVs overcome this fundamental structure, and discuss potential methodological approaches for future analyses to clarify these issues. Understanding how EVs cross the BBB will be essential for their future use as vehicles in pharmacology and therapeutics.


Asunto(s)
Barrera Hematoencefálica , Vesículas Extracelulares , Animales , Transporte Biológico , Vesículas Extracelulares/metabolismo , Mamíferos , Transcitosis , Pez Cebra
16.
Nanomedicine ; 44: 102569, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35595016

RESUMEN

The ß-amyloid (Aß) peptide is one of the key etiological agents in Alzheimer's disease (AD). The in vivo detection of Aß species is challenging in all stages of the illness. Currently, the development of fluorescent probes allows the detection of Aß in animal models in the near-infrared region (NIR). However, considering future applications in biomedicine, it is relevant to develop strategies to improve detection of amyloid aggregates using NIR probes. An innovative approach to increase the fluorescence signal of these fluorophores is the use of plasmonic gold nanoparticles (surface-enhanced fluorescence effect). In this work, we improved the detection of Aß aggregates in C. elegans and mouse models of AD by co-administering functionalized gold nanorods (GNRs-PEG-D1) with the fluorescent probes CRANAD-2 or CRANAD-58, which bind selectively to different amyloid species (soluble and insoluble). This work shows that GNRs improve the detection of Aß using NIR probes in vivo.


Asunto(s)
Enfermedad de Alzheimer , Nanopartículas del Metal , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides/metabolismo , Animales , Caenorhabditis elegans , Colorantes Fluorescentes/química , Oro , Nanopartículas del Metal/química , Ratones
17.
Pharmaceutics ; 14(5)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35631544

RESUMEN

One of the recent attractive therapeutic approaches for cancer treatment is restoring downregulated microRNAs. They play an essential muti-regulatory role in cellular processes such as proliferation, differentiation, survival, apoptosis, cell cycle, angiogenesis, and metastasis, among others. In this study, a gold nanoplatform (GNPF) carrying miR-145, a downregulated microRNA in many cancer types, including epithelial ovarian cancer, was designed and synthesized. For targeting purposes, the GNPF was functionalized with the FSH33 peptide, which provided selectivity for ovarian cancer, and loaded with the miR-145 to obtain the nanosystem GNPF-miR-145. The GNPF-mir-145 was selectively incorporated in A2780 and SKOV3 cells and significantly inhibited cell viability and migration and exhibited proliferative and anchor-independent growth capacities. Moreover, it diminished VEGF release and reduced the spheroid size of ovarian cancer through the damage of cell membranes, thus decreasing cell viability and possibly activating apoptosis. These results provide important advances in developing miR-based therapies using nanoparticles as selective vectors and provide approaches for in vivo evaluation.

18.
Chem Soc Rev ; 51(7): 2601-2680, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35234776

RESUMEN

Recent advances in technology are expected to increase our current understanding of neuroscience. Nanotechnology and nanomaterials can alter and control neural functionality in both in vitro and in vivo experimental setups. The intersection between neuroscience and nanoscience may generate long-term neural interfaces adapted at the molecular level. Owing to their intrinsic physicochemical characteristics, gold nanostructures (GNSs) have received much attention in neuroscience, especially for combined diagnostic and therapeutic (theragnostic) purposes. GNSs have been successfully employed to stimulate and monitor neurophysiological signals. Hence, GNSs could provide a promising solution for the regeneration and recovery of neural tissue, novel neuroprotective strategies, and integrated implantable materials. This review covers the broad range of neurological applications of GNS-based materials to improve clinical diagnosis and therapy. Sub-topics include neurotoxicity, targeted delivery of therapeutics to the central nervous system (CNS), neurochemical sensing, neuromodulation, neuroimaging, neurotherapy, tissue engineering, and neural regeneration. It focuses on core concepts of GNSs in neurology, to circumvent the limitations and significant obstacles of innovative approaches in neurobiology and neurochemistry, including theragnostics. We will discuss recent advances in the use of GNSs to overcome current bottlenecks and tackle technical and conceptual challenges.


Asunto(s)
Nanoestructuras , Neurociencias , Oro , Nanoestructuras/uso terapéutico , Nanotecnología , Ingeniería de Tejidos
19.
Int J Pharm ; 611: 121311, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34813905

RESUMEN

This is the first report on the inclusion of nanocrystals (NCs) within 3D-printed oral solid dosage forms -3D-printed tablets or printlets- produced by the Melting Solidification Printing Process (MESO-PP) 3D printing technique. This method allowed the incorporation of albendazole (ABZ) nanocrystals in a concentration of up to 50% w/w, something not achieved in conventional tablets. An ink of PEG 1500/propylenegycol was used as a carrier and no physicochemical interactions or crystallinity modifications were observed due to the inclusion of ABZ-NCs into the ink, as demonstrated by TGA, DSC, XRD and FT-IR. In particular, the relative crystallinity of the ink loaded with NCs was 97.8% similar to the physical mixture of the components. Moreover, the presence of NCs was observed in the surface and matrix of the printlets by SEM. In addition, the printlet NCs demonstrated to be more effective than NCs included in hard gelatin capsules in improving drug dissolution in HCl 0.1 N. The particle size, crystallinity and chemical stability of the nanocrystals was maintained before and after 180 days of storage. Thus, these findings exhibit relevant pharmaceutical potential for developing stable, fast-release, oral, solid dosage forms of poorly soluble drugs combining 3D printing and nanocrystals. Additionally, this technique could be applied for printing objects using different types of nanocrystals embedded in low melting temperature polymers.


Asunto(s)
Nanopartículas , Administración Oral , Impresión Tridimensional , Espectroscopía Infrarroja por Transformada de Fourier , Comprimidos
20.
Mater Sci Eng C Mater Biol Appl ; 131: 112512, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34857291

RESUMEN

The administration and controlled release of drugs over time remains one of the greatest challenges of science today. In the nanomaterials field, anisotropic gold nanoparticles (AuNPs) with plasmon bands centered at the near-infrared region (NIR), such as gold nanorods (AuNRs) and gold nanoprisms (AuNPrs), under laser irradiation, locally increase the temperature, allowing the release of drugs. In this sense, temporally controlled drug delivery could be promoted by external stimuli using thermo-reversible chemical reactions, such as Diels-Alder cycloadditions from a diene and a dienophile fragment (compound a). In this study, an antitumor drug (methotrexate, MTX) was linked to plasmonic AuNPs by a Diels-Alder adduct (compound c), which after NIR suffers a retro-Diels-Alder reaction, producing release of the drug (compound b). We obtained two nanosystems based on AuNRs and AuNPrs. Both nanoconstructs were coated with BSA-r8 (Bovine Serum Albumin functionalized with Arg8, all-D octa arginine) in order to increase the colloidal stability and promote internalization of the nanosystems on HeLa and SK-BR-3 cells. In addition, the presence of BSA allows protecting the cargo from being released on the extracellular environment and promotes the photothermal release of the drug in the presence of glutathione (GSH). The nanosystems' drug release profile was evaluated after NIR irradiation in the presence and absence of glutathione (GSH), showing a considerable increase of drug release when NIR light and glutathione were combined. This work broadens the range of possibilities of using two complementary strategies for the controlled release of an antitumor drug from AuNRs and AuNPrs: the photothermal cleavage of a thermolabile adduct controlled by an external stimulus (laser irradiation), complemented with the use of the intracellular metabolite GSH.


Asunto(s)
Nanopartículas del Metal , Nanotubos , Glutatión , Oro , Metotrexato/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA