Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 26(9): 107565, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37664630

RESUMEN

Macrophage migration inhibitory factor (MIF) is a pleiotropic protein with chemotactic, pro-inflammatory, and growth-promoting activities first discovered in mammals. In parasites, MIF homologs are involved in immune evasion and pathogenesis. Here, we present the first comprehensive analysis of an MIF protein from the devastating plant pathogen Magnaporthe oryzae (Mo). The fungal genome encodes a single MIF protein (MoMIF1) that, unlike the human homolog, harbors multiple low-complexity regions (LCRs) and is unique to Ascomycota. Following infection, MoMIF1 is expressed in the biotrophic phase of the fungus, and is strongly down-regulated during subsequent necrotrophic growth in leaves and roots. We show that MoMIF1 is secreted during plant infection, affects the production of the mycotoxin tenuazonic acid and inhibits plant cell death. Our results suggest that MoMIF1 is a novel key regulator of fungal virulence that maintains the balance between biotrophy and necrotrophy during the different phases of fungal infection.

2.
BMC Plant Biol ; 22(1): 447, 2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36114461

RESUMEN

BACKGROUND: Plants are continuously exposed to changing environmental conditions and biotic attacks that affect plant growth. In crops, the inability to respond appropriately to stress has strong detrimental effects on agricultural production and yield. Ca2+ signalling plays a fundamental role in the response of plants to most abiotic and biotic stresses. However, research on stimulus-specific Ca2+ signals has mostly been pursued in Arabidopsis thaliana, while in other species these events are little investigated . RESULTS: In this study, we introduced the Ca2+ reporter-encoding gene APOAEQUORIN into the crop species barley (Hordeum vulgare). Measurements of the dynamic changes in [Ca2+]cyt in response to various stimuli such as NaCl, mannitol, H2O2, and flagellin 22 (flg22) revealed the occurrence of dose- as well as tissue-dependent [Ca2+]cyt transients. Moreover, the Ca2+ signatures were unique for each stimulus, suggesting the involvement of different Ca2+ signalling components in the corresponding stress response. Alongside, the barley Ca2+ signatures were compared to those produced by the phylogenetically distant model plant Arabidopsis. Notable differences in temporal kinetics and dose responses were observed, implying species-specific differences in stress response mechanisms. The plasma membrane Ca2+ channel blocker La3+ strongly inhibited the [Ca2+]cyt response to all tested stimuli, indicating a critical role of extracellular Ca2+ in the induction of stress-associated Ca2+ signatures in barley. Moreover, by analysing spatio-temporal dynamics of the [Ca2+]cyt transients along the developmental gradient of the barley leaf blade we demonstrate that different parts of the barley leaf show quantitative differences in [Ca2+]cyt transients in response to NaCl and H2O2. There were only marginal differences in the response to flg22, indicative of developmental stage-dependent Ca2+ responses specifically to NaCl and H2O2. CONCLUSION: This study reveals tissue-specific Ca2+ signals with stimulus-specific kinetics in the crop species barley, as well as quantitative differences along the barley leaf blade. A number of notable differences to the model plants Arabidopsis may be linked to different stimulus sensitivity. These transgenic barley reporter lines thus present a valuable tool to further analyse mechanisms of Ca2+ signalling in this crop and to gain insights into the variation of Ca2+-dependent stress responses between stress-susceptible and -resistant species.


Asunto(s)
Arabidopsis , Hordeum , Arabidopsis/genética , Calcio/metabolismo , Flagelina/metabolismo , Flagelina/farmacología , Hordeum/metabolismo , Peróxido de Hidrógeno/metabolismo , Manitol/metabolismo , Manitol/farmacología , Plantas/metabolismo , Cloruro de Sodio/farmacología
3.
J Fungi (Basel) ; 8(5)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35628709

RESUMEN

The soil microbiome contributes to nutrient acquisition and plant adaptation to numerous biotic and abiotic stresses. Numerous studies have been conducted over the past decade showing that plants take up nutrients better when associated with fungi and additional beneficial bacteria that promote plant growth, but the mechanisms by which the plant host benefits from this tripartite association are not yet fully understood. In this article, we report on a synergistic interaction between rice (Oryza sativa), Piriformospora indica (an endophytic fungus colonizing the rice roots), and Azotobacter chroococcum strain W5, a free-living nitrogen-fixing bacterium. On the basis of mRNA expression analysis and enzymatic activity, we found that co-inoculation of plant roots with the fungus and the rhizobacterium leads to enhanced plant growth and improved nutrient uptake compared to inoculation with either of the two microbes individually. Proteome analysis of O. sativa further revealed that proteins involved in nitrogen and phosphorus metabolism are upregulated and improve nitrogen and phosphate uptake. Our results also show that A. chroococcum supports colonization of rice roots by P. indica, and consequentially, the plants are more resistant to biotic stress upon co-colonization. Our research provides detailed insights into the mechanisms by which microbial partners synergistically promote each other in the interaction while being associated with the host plant.

4.
Plant Biotechnol J ; 20(1): 89-102, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34487614

RESUMEN

The Microrchidia (MORC) family proteins are important nuclear regulators in both animals and plants with critical roles in epigenetic gene silencing and genome stabilization. In the crop plant barley (Hordeum vulgare), seven MORC gene family members have been described. While barley HvMORC1 has been functionally characterized, very little information is available about other HvMORC paralogs. In this study, we elucidate the role of HvMORC6a and its potential interactors in regulating plant immunity via analysis of CRISPR/SpCas9-mediated single and double knockout (dKO) mutants, hvmorc1 (previously generated and characterized by our group), hvmorc6a, and hvmorc1/6a. For generation of hvmorc1/6a, we utilized two different strategies: (i) successive Agrobacterium-mediated transformation of homozygous single mutants, hvmorc1 and hvmorc6a, with the respective second construct, and (ii) simultaneous transformation with both hvmorc1 and hvmorc6a CRISPR/SpCas9 constructs. Total mutation efficiency in transformed homozygous single mutants ranged from 80 to 90%, while upon simultaneous transformation, SpCas9-induced mutation in both HvMORC1 and HvMORC6a genes was observed in 58% of T0 plants. Subsequent infection assays showed that HvMORC6a covers a key role in resistance to biotrophic (Blumeria graminis) and necrotrophic (Fusarium graminearum) plant pathogenic fungi, where the dKO hvmorc1/6a showed the strongest resistant phenotype. Consistent with this, the dKO showed highest levels of basal PR gene expression and derepression of TEs. Finally, we demonstrate that HvMORC1 and HvMORC6a form distinct nucleocytoplasmic homo-/heteromers with other HvMORCs and interact with components of the RNA-directed DNA methylation (RdDM) pathway, further substantiating that MORC proteins are involved in the regulation of TEs in barley.


Asunto(s)
Hordeum , Sistemas CRISPR-Cas/genética , Regulación de la Expresión Génica de las Plantas/genética , Silenciador del Gen , Hordeum/metabolismo , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
PLoS One ; 16(8): e0252365, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34351929

RESUMEN

In filamentous fungi, gene silencing by RNA interference (RNAi) shapes many biological processes, including pathogenicity. Recently, fungal small RNAs (sRNAs) have been shown to act as effectors that disrupt gene activity in interacting plant hosts, thereby undermining their defence responses. We show here that the devastating mycotoxin-producing ascomycete Fusarium graminearum (Fg) utilizes DICER-like (DCL)-dependent sRNAs to target defence genes in two Poaceae hosts, barley (Hordeum vulgare, Hv) and Brachypodium distachyon (Bd). We identified 104 Fg-sRNAs with sequence homology to host genes that were repressed during interactions of Fg and Hv, while they accumulated in plants infected by the DCL double knock-out (dKO) mutant PH1-dcl1/2. The strength of target gene expression correlated with the abundance of the corresponding Fg-sRNA. Specifically, the abundance of three tRNA-derived fragments (tRFs) targeting immunity-related Ethylene overproducer 1-like 1 (HvEOL1) and three Poaceae orthologues of Arabidopsis thaliana BRI1-associated receptor kinase 1 (HvBAK1, HvSERK2 and BdSERK2) was dependent on fungal DCL. Additionally, RNA-ligase-mediated Rapid Amplification of cDNA Ends (RLM-RACE) identified infection-specific degradation products for the three barley gene transcripts, consistent with the possibility that tRFs contribute to fungal virulence via targeted gene silencing.


Asunto(s)
Brachypodium , Fusarium/fisiología , Hordeum , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , ARN de Hongos/metabolismo , Ribonucleasa III/metabolismo , Factores de Virulencia/metabolismo , Brachypodium/metabolismo , Brachypodium/microbiología , Proteínas Fúngicas , Hordeum/metabolismo , Hordeum/microbiología , Enfermedades de las Plantas/genética , ARN de Hongos/genética , Ribonucleasa III/genética , Factores de Virulencia/genética
7.
J Plant Physiol ; 263: 153451, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34119743

RESUMEN

Plants and animals utilize various regulatory mechanisms for control of gene expression during development in different tissues and cell types. About 30 years ago, a new mechanism of gene regulation, termed RNA interference (RNAi), was discovered and proved revolutionary for the mechanistic understanding of gene regulation. Noncoding RNAs, including short, 21-24 nucleotide (nt) long microRNAs (miRNAs), endogenously-generated from MIR genes, are key components of RNAi processes, by post-transcriptionally controlling transcripts with antisense complementarity through either translational repression or mRNA degradation. Since their discovery, important roles in regulation of ontogenetic development, cell differentiation, proliferation, and apoptosis in eukaryotes have been elucidated. In plants, miRNAs are known regulatory elements of basic endogenous functions and responses to the environmental stimuli. While the role of miRNAs in regulation of nutrient uptake, circadian clock and general response to abiotic stress is already well understood, a comprehensive understanding of their immune-regulatory roles in response to various biotic stress factors has not yet been achieved. This review summarizes the current understanding of the function of miRNAs and their targets in plants during interaction with microbial pathogens and symbionts. Additionally, we provide a consensus conclusion regarding the typical induction or repression response of conserved miRNA families to pathogenic and beneficial fungi, bacteria, and oomycetes, as well as an outlook of agronomic application of miRNAs in plants. Further investigation of plant miRNAs responsive to microbes, aided with novel sequencing and bioinformatics approaches for discovery and prediction in non-model organisms holds great potential for development of new forms of plant protection.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Desarrollo de la Planta/genética , Reguladores del Crecimiento de las Plantas/genética , ARN de Planta , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología
8.
Curr Opin Biotechnol ; 70: 136-142, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34000482

RESUMEN

Growing evidence indicates that RNAi is an effective control strategy for agronomically important fungi. To implement RNAi-based crop protection strategies, dsRNA molecules are either sprayed on foliage or generated by genetically engineered plants. Here, we summarize current knowledge of the mechanisms governing dsRNA uptake and RNAi-mediated gene silencing in fungi, as well as the factors that influence these phenomena. Of primary importance is dsRNA design, as identifying an appropriate gene for silencing and determining which region of the gene to target are critical for maximizing efficiency. Strategies for enhancing dsRNA uptake, potentially by using formulations and/or carriers that prevent dsRNA degradation by (a)biotic factors and possibly facilitate translocation, also are a key consideration. Finally, determining whether the fungal pathogen of interest contains a functional RNAi machinery is a major consideration. Integrated experimental confirmation of these important factors is necessary for the successful development of crop protection strategies against fungal pathogens.


Asunto(s)
Protección de Cultivos , ARN Bicatenario , Hongos/genética , Silenciador del Gen , Interferencia de ARN , ARN Bicatenario/genética
9.
Int J Mol Sci ; 22(2)2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33440747

RESUMEN

The hemibiotrophic fungus Magnaporthe oryzae (Mo) is the causative agent of rice blast and can infect aerial and root tissues of a variety of Poaceae, including the model Brachypodium distachyon (Bd). To gain insight in gene regulation processes occurring at early disease stages, we comparatively analyzed fungal and plant mRNA and sRNA expression in leaves and roots. A total of 310 Mo genes were detected consistently and differentially expressed in both leaves and roots. Contrary to Mo, only minor overlaps were observed in plant differentially expressed genes (DEGs), with 233 Bd-DEGs in infected leaves at 2 days post inoculation (DPI), compared to 4978 at 4 DPI, and 138 in infected roots. sRNA sequencing revealed a broad spectrum of Mo-sRNAs that accumulated in infected tissues, including candidates predicted to target Bd mRNAs. Conversely, we identified a subset of potential Bd-sRNAs directed against fungal cell wall components, virulence genes and transcription factors. We also show a requirement of operable RNAi genes from the DICER-like (DCL) and ARGONAUTE (AGO) families for fungal virulence. Overall, our work elucidates the extensive reprogramming of transcriptomes and sRNAs in both plant host (Bd) and fungal pathogen (Mo), further corroborating the critical role played by sRNA species in the establishment of the interaction and its outcome.


Asunto(s)
Brachypodium/genética , Brachypodium/microbiología , Perfilación de la Expresión Génica , Magnaporthe/genética , ARN Pequeño no Traducido/genética , Transcriptoma , Biología Computacional/métodos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación de la Expresión Génica de las Plantas , Modelos Moleculares , Mutación , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Interferencia de ARN , Relación Estructura-Actividad , Virulencia
10.
Environ Microbiol ; 23(4): 2102-2115, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33314556

RESUMEN

Non-expressor of pathogenesis-related genes 1 (NPR1) is a key regulator of plant innate immunity and systemic disease resistance. The model for NPR1 function is based on experimental evidence obtained largely from dicots; however, this model does not fit all aspects of Poaceae family, which includes major crops such as wheat, rice and barley. In addition, there is little scientific data on NPR1's role in mutualistic symbioses. We assessed barley (Hordeum vulgare) HvNPR1 requirement during the establishment of mutualistic symbiosis between barley and beneficial Alphaproteobacterium Rhizobium radiobacter F4 (RrF4). Upon RrF4 root-inoculation, barley NPR1-knockdown (KD-hvnpr1) plants lost the typical spatiotemporal colonization pattern and supported less bacterial multiplication. Following RrF4 colonization, expression of salicylic acid marker genes were strongly enhanced in wild-type roots; whereas in comparison, KD-hvnpr1 roots exhibited little to no induction. Both basal and RrF4-induced root-initiated systemic resistance against virulent Blumeria graminis were impaired in leaves of KD-hvnpr1. Besides these immune-related differences, KD-hvnpr1 plants displayed higher root and shoot biomass than WT. However, RrF4-mediated growth promotion was largely compromised in KD-hvnpr1. Our results demonstrate a critical role for HvNPR1 in establishing a mutualistic symbiosis between a beneficial bacterium and a cereal crop.


Asunto(s)
Basidiomycota , Hordeum , Rhizobium , Agrobacterium tumefaciens , Ascomicetos , Raíces de Plantas , Simbiosis
11.
Fungal Biol ; 124(9): 781-800, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32883429

RESUMEN

Despite multiple taxonomic revisions, several uncertainties at the genus and species level remain to be resolved within the Serendipitaceae family (Sebacinales). This volatile classification is attributed to the limited number of available axenic cultures and the scarcity of useful morphological traits. In the current study, we attempted to discover alternative taxonomic markers not relying on DNA sequences to differentiate among the closely related members of our Congolese Serendipita isolate collection and the reference strains S. indica (syn. Piriformospora indica) and S. williamsii (syn. P. williamsii). We demonstrated that nuclear distribution across hyphal cells and genome size (determined by flow cytometry) did not have enough resolving power, but quantitative and qualitative variations in the ultrastructure of the dolipore septa investigated by transmission electron microscopy did provide useful markers. Multivariate analysis revealed that subtle differences in ultrastructural characteristics of the parenthesome and the attached endoplasmic reticulum are most relevant when studying this fungal group. Moreover, the observed clustering pattern showed that there might be more diversity amongst the Congolese isolates within the S. 'williamsii' species complex than previously anticipated based on molecular data. Altogether, our results provide novel perspectives on the use of integrative approaches to support sebacinoid and Serendipitaceae taxonomy.


Asunto(s)
Basidiomycota , Tamaño del Genoma , Genoma Fúngico , Basidiomycota/clasificación , Basidiomycota/genética , Hifa
12.
Plant Cell ; 32(9): 2742-2762, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32699170

RESUMEN

While root diseases are among the most devastating stresses in global crop production, our understanding of root immunity is still limited relative to our knowledge of immune responses in leaves. Considering that root performance is based on the concerted functions of its different cell types, we undertook a cell type-specific transcriptome analysis to identify gene networks activated in epidermis, cortex, and pericycle cells of Arabidopsis (Arabidopsis thaliana) roots challenged with two immunity elicitors, the bacterial flagellin-derived flg22 and the endogenous Pep1 peptide. Our analyses revealed distinct immunity gene networks in each cell type. To further substantiate our understanding of regulatory patterns underlying these cell type-specific immunity networks, we developed a tool to analyze paired transcription factor binding motifs in the promoters of cell type-specific genes. Our study points toward a connection between cell identity and cell type-specific immunity networks that might guide cell types in launching immune response according to the functional capabilities of each cell type.


Asunto(s)
Arabidopsis/citología , Arabidopsis/inmunología , Redes Reguladoras de Genes/inmunología , Raíces de Plantas/inmunología , Arabidopsis/fisiología , Proteínas de Arabidopsis , Basidiomycota , Sitios de Unión , Regulación de la Expresión Génica de las Plantas , Células Vegetales/inmunología , Inmunidad de la Planta/genética , Inmunidad de la Planta/fisiología , Raíces de Plantas/citología , Raíces de Plantas/microbiología , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Transducción de Señal , Transactivadores
13.
Methods Mol Biol ; 2166: 227-238, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32710412

RESUMEN

Double-stranded RNA (dsRNA) plays an essential role in many biological processes and has a great potential for agronomic applications in disease and pest control. A simple and effective method to monitor dsRNA uptake by fungi is crucial for the use of dsRNA as alternative fungicide. The protocol reported in this chapter describes an efficient method to detect and localize labeled dsRNA in fungal hyphae. We use the fungal Verticillium longisporum, a fungal plant pathogen that commonly infects rapeseed and other Brassica species, to explain the procedure, though we have validated the method in a broad spectrum of fungi. Hereafter we elucidate step-by-step the production, fluorescence labeling, as well as detection of dsRNA via fluorescence microscopy in fungal mycelium.


Asunto(s)
Hongos/metabolismo , Hifa/metabolismo , Microscopía Fluorescente/métodos , ARN Bicatenario/química , ARN Bicatenario/aislamiento & purificación , Antifúngicos , Ascomicetos/genética , Ascomicetos/metabolismo , Transporte Biológico/genética , Brassicaceae/microbiología , Simulación por Computador , Fluorescencia , Hongos/genética , Enfermedades de las Plantas/microbiología , Interferencia de ARN , ARN Interferente Pequeño/genética
14.
Methods Mol Biol ; 2124: 281-294, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32277460

RESUMEN

Biotechnological methods for targeted gene transfers into plants are key for successful breeding in the twenty-first century and thus essential for the survival of humanity. Two decades ago, genetic transformation of crop plants was not routine, and it was all but impossible with important cereals such as barley and wheat. The recent focus on crop plant genomics-yet based on the Arabidopsis toolbox-boosted the research for more efficient plant transformation protocols, thereby considerably widened the number of genetically tractable crops. Moreover, modern genome editing methods such as the CRISPR/Cas technique are game changers in plant breeding, though heavily dependent on technical optimization of plant transformation. Basically, there are two successful ways of introducing DNA into plant cells: one is making use of a living DNA vector, namely, microbes such as the soil bacterium Agrobacterium tumefaciens that infects plants and naturally transfers and subsequently integrates DNA into the plant genome. The other method uses a direct physical transfer of DNA by means of microinjection, microprojectile bombardment, or polymers such as polyethylene glycol. Both ways subsequently require sophisticated strategies for selecting and multiplying the transformed cells under tissue culture conditions to develop into a fully functional plant with the new desirable characteristics. Here we discuss practical and theoretical aspects of cereal crop plant transformation by Agrobacterium-mediated transformation and microparticle bombardment. Using immature embryos as explants, the efficiency of cereal transformation is compelling, reaching today up to 80% transformation efficiency.


Asunto(s)
Agrobacterium/genética , Grano Comestible/genética , Técnicas de Transferencia de Gen , Hordeum/genética , Transformación Genética , Triticum/genética , Agrobacterium tumefaciens/genética , Biolística , ADN de Plantas/genética , Vectores Genéticos/metabolismo , Glucuronidasa/metabolismo , Hordeum/embriología , Plantas Modificadas Genéticamente , Esterilización , Triticum/embriología
15.
Biotechnol Adv ; 39: 107463, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31678220

RESUMEN

RNA interference (RNAi) is a biological process in which small RNA (sRNA) molecules sequence-specifically silence gene expression at the transcriptional or post-transcriptional level, either by directing inhibitory chromatin modifications or by decreasing the stability or translation potential of the targeted mRNA. The trigger for gene silencing is double-stranded RNA (dsRNA) generated from an endogenous genomic locus or a foreign source, such as a transgene or virus. The process of gene silencing can be exploited in agriculture to control plant diseases and pests. Of the pests that impact crop yield (including nematodes, arthropods, rodents, snails, slugs and birds), insects constitute the largest and most diverse group. Here, we review the "pros" and "cons" of using RNAi technology mediated by dsRNA-expressing transgenic plants (host-induced gene silencing, HIGS) or direct application of chemically synthesized dsRNA to control plant-damaging insects. Rapid progress in elucidating RNAi mechanisms has led to the first commercial products on the market. Given the high potential of RNAi strategies, their use in agriculture, horticulture, and forestry will likely be extensive in the future. However, further studies are needed to improve the efficacy of RNAi-based plant protection strategies and to assess their associated safety risks.


Asunto(s)
Control de Insectos , Animales , Insectos , Plantas Modificadas Genéticamente , Interferencia de ARN , ARN Bicatenario
16.
Front Plant Sci ; 10: 1332, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31708948

RESUMEN

RNA interference (RNAi) is a biological process in which small RNAs regulate gene silencing at the transcriptional or posttranscriptional level. The trigger for gene silencing is double-stranded RNA generated from an endogenous genomic locus or a foreign source, such as a transgene or virus. In addition to regulating endogenous gene expression, RNAi provides the mechanistic basis for small RNA-mediated communication between plant hosts and interacting pathogenic microbes, known as cross-kingdom RNAi. Two core protein components, Argonaute (AGO) and Dicer (DCL), are central to the RNAi machinery of eukaryotes. Plants encode for several copies of AGO and DCL genes; in Arabidopsis thaliana, the AGO protein family contains 10 members, and the DCL family contains four. Little is known about the conservation and specific roles of these proteins in monocotyledonous plants, which account for the most important food staples. Here, we utilized in silico tools to investigate the structure and related functions of AGO and DCL proteins from the model grass Brachypodium distachyon. Based on the presence of characteristic domains, 16 BdAGO- and 6 BdDCL-predicted proteins were identified. Phylogenetic analysis showed that both protein families were expanded in Brachypodium as compared with Arabidopsis. For BdDCL proteins, both plant species contain a single copy of DCL1 and DCL4; however, Brachypodium contains two copies each of DCL2 and DCL3. Members of the BdAGO family were placed in all three functional clades of AGO proteins previously described in Arabidopsis. The greatest expansion occurred in the AtAGO1/5/10 clade, which contains nine BdAGOs (BdAGO5/6/7/9/10/11/12/15/16). The catalytic tetrad of the AGO P-element-induced wimpy testis domain (PIWI), which is required for endonuclease activity, is conserved in most BdAGOs, with the exception of BdAGO1, which lacks the last D/H residue. Three-dimensional modeling of BdAGO proteins using tertiary structure prediction software supported the phylogenetic classification. We also predicted a provisional interactome network for BdAGOs, their localization within the cell, and organ/tissue-specific expression. Exploring the specifics of RNAi machinery proteins in a model grass species can serve as a proxy for agronomically important cereals such as barley and wheat, where the development of RNAi-based plant protection strategies is of great interest.

17.
Front Microbiol ; 10: 1662, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31616385

RESUMEN

In filamentous fungi, gene silencing through RNA interference (RNAi) shapes many biological processes, including pathogenicity. We explored the requirement of key components of fungal RNAi machineries, including DICER-like 1 and 2 (FgDCL1, FgDCL2), ARGONAUTE 1 and 2 (FgAGO1, FgAGO2), AGO-interacting protein FgQIP (QDE2-interacting protein), RecQ helicase (FgQDE3), and four RNA-dependent RNA polymerases (FgRdRP1, FgRdRP2, FgRdRP3, FgRdRP4), in the ascomycete mycotoxin-producing fungal pathogen Fusarium graminearum (Fg) for sexual and asexual multiplication, pathogenicity, and its sensitivity to double-stranded (ds)RNA. We corroborate and extend earlier findings that conidiation, ascosporogenesis, and Fusarium head blight (FHB) symptom development require an operable RNAi machinery. The involvement of RNAi in conidiation is dependent on environmental conditions as it is detectable only under low light (<2 µmol m-2 s-1). Although both DCLs and AGOs partially share their functions, the sexual ascosporogenesis is mediated primarily by FgDCL1 and FgAGO2, while FgDCL2 and FgAGO1 contribute to asexual conidia formation and germination. FgDCL1 and FgAGO2 also account for pathogenesis as their knockout (KO) results in reduced FHB development. Apart from KO mutants Δdcl2 and Δago1, mutants Δrdrp2, Δrdrp3, Δrdrp4, Δqde3, and Δqip are strongly compromised for conidiation, while KO mutations in all RdPRs, QDE3, and QIP strongly affect ascosporogenesis. Analysis of trichothecenes mycotoxins in wheat kernels showed that the relative amount of deoxynivalenol (DON), calculated as [DON] per amount of fungal genomic DNA was reduced in all spikes infected with RNAi mutants, suggesting the possibility that the fungal RNAi pathways affect Fg's DON production. Moreover, silencing of fungal genes by exogenous target gene-specific double-stranded RNA (dsRNA) (spray-induced gene silencing, SIGS) is dependent on DCLs, AGOs, and QIP, but not on QDE3. Together these data show that in F. graminearum, different key components of the RNAi machinery are crucial in different steps of fungal development and pathogenicity.

18.
Mol Plant Pathol ; 20(12): 1636-1644, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31603277

RESUMEN

CYP3RNA, a double-stranded (ds)RNA designed to concomitantly target the two sterol 14α-demethylase genes FgCYP51A and FgCYP51B and the fungal virulence factor FgCYP51C, inhibits the growth of the ascomycete fungus Fusarium graminearum (Fg) in vitro and in planta. Here we compare two different methods (setups) of dsRNA delivery, viz. transgene expression (host-induced gene silencing, HIGS) and spray application (spray-induced gene silencing, SIGS), to assess the activity of CYP3RNA and novel dsRNA species designed to target one or two FgCYP51 genes. Using Arabidopsis and barley, we found that dsRNA designed to target two FgCYP51 genes inhibited fungal growth more efficiently than dsRNA targeting a single gene, although both dsRNA species reduced fungal infection. Either dsRNA delivery method reduced fungal growth stronger than anticipated from previous mutational knock-out (KO) strategies, where single gene KO had no significant effect on fungal viability. Consistent with the strong inhibitory effects of the dsRNAs on fungal development in both setups, we detected to a large extent dsRNA-mediated co-silencing of respective non-target FgCYP51 genes. Together, our data further support the valuation that dsRNA applications have an interesting potential for pesticide target validation and gene function studies, apart from their potential for crop protection.


Asunto(s)
Arabidopsis/microbiología , Fusarium/efectos de los fármacos , Silenciador del Gen , Marcación de Gen/métodos , Genes Fúngicos/efectos de los fármacos , Hordeum/microbiología , ARN Bicatenario/farmacología , Sistema Enzimático del Citocromo P-450/genética , Fusarium/genética , Enfermedades de las Plantas/microbiología , Programas Informáticos , Transgenes
19.
Genes (Basel) ; 10(10)2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31554205

RESUMEN

Macrophage migration inhibitory factors (MIF) are multifunctional proteins regulating major processes in mammals, including activation of innate immune responses. MIF proteins also play a role in innate immunity of invertebrate organisms or serve as virulence factors in parasitic organisms, raising the question of their evolutionary history. We performed a broad survey of MIF presence or absence and evolutionary relationships across 803 species of plants, fungi, protists, and animals, and explored a potential relation with the taxonomic status, the ecology, and the lifestyle of individual species. We show that MIF evolutionary history in eukaryotes is complex, involving probable ancestral duplications, multiple gene losses and recent clade-specific re-duplications. Intriguingly, MIFs seem to be essential and highly conserved with many sites under purifying selection in some kingdoms (e.g., plants), while in other kingdoms they appear more dispensable (e.g., in fungi) or present in several diverged variants (e.g., insects, nematodes), suggesting potential neofunctionalizations within the protein superfamily.


Asunto(s)
Factores Inhibidores de la Migración de Macrófagos/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Eucariontes/genética , Evolución Molecular , Humanos , Filogenia
20.
Curr Issues Mol Biol ; 30: 59-74, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30070651

RESUMEN

Endofungal bacteria are bacterial symbionts of fungi that exist within fungal hyphae and spores. There is increasing evidence that these bacteria, alone or in combination with their fungal hosts play a critical role in tripartite symbioses with plants, where they may contribute to plant growth and disease resistance to microbial pathogens. As the frequency of bacteria in fungi is commonly very low, breakthroughs in technology such as molecular taxonomy and laser scanning microscopy were required to establish the functional contribution of these bacteria in complex symbioses. Yet, the overall biological significance of endofungal bacteria is largely unknown and further progress in understanding is hampered by a very few biological systems where endofungal bacteria have been described mechanistically. We review here the current knowledge on endobacteria (EB) and their role in different types of fungal symbioses with plants. We show that various attempts to cure fungal cells from endobacteria failed, further suggesting that they play a crucial role in the symbiosis. Moreover, isolation of some of the endobacteria from their fungal hosts allowed confirming their autonomous beneficial activity such as plant growth promotion and resistance-inducing activity. The review addresses the potential agricultural significance of endofungal bacteria and their role in supporting sustainable agriculture by promoting plant growth, improving plant resistance, and decreasing yield loss caused by many microbial pathogens.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Productos Agrícolas/microbiología , Productos Agrícolas/fisiología , Hongos/fisiología , Aptitud Genética , Interacciones Microbiota-Huesped , Interacciones Microbianas , Biomarcadores , Modelos Biológicos , Desarrollo de la Planta , Percepción de Quorum , Simbiosis , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...