Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 21652, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303899

RESUMEN

The plasma-mediated decomposition of volatile organic compounds has previously been investigated in the gas phase with metal oxides as heterogeneous catalysts. While the reactive species in plasma itself are well investigated, very little is known about the influence of metal catalysts in solution. Here, we present initial investigations on the time-dependent plasma-supported oxidation of benzyl alcohol, benzaldehyde and phenol in the presence of molecular iron complexes in solution. Products were identified by HPLC, ESI-MS, FT-IR, and [Formula: see text] spectroscopy. Compared to metal-free oxidation of the substrates, which is caused by reactive oxygen species and leads to a mixture of products, the metal-mediated reactions lead to one product cleanly, and faster than in the metal-free reactions. Most noteworthy, even catalytic amounts of metal complexes induce these clean transformations. The findings described here bear important implications for plasma-supported industrial waste transformations, as well as for plasma-mediated applications in biomedicine, given the fact that iron is the most abundant redox-active metal in the human body.

2.
Sci Rep ; 9(1): 18024, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31792236

RESUMEN

Cold atmospheric pressure plasma is an attractive new research area in clinical trials to treat skin diseases. However, the principles of plasma modification of biomolecules in aqueous solutions remain elusive. It is intriguing how reactive oxygen and nitrogen species (RONS) produced by plasma interact on a molecular level in a biological environment. Previously, we identified the chemical effects of dielectric barrier discharges (DBD) on the glutathione (GSH) and glutathione disulphide (GSSG) molecules as the most important redox pair in organisms responsible for detoxification of intracellular reactive species. However, in the human body there are also present redox-active metals such as iron, which is the most abundant transition metal in healthy humans. In the present study, the time-dependent chemical modifications on GSH and GSSG in the presence of iron(II) and iron(III) complexes caused by a dielectric barrier discharge (DBD) under ambient conditions were investigated by IR spectroscopy, mass spectrometry and High Performance Liquid Chromatography (HPLC). HPLC chromatograms revealed one clean peak after treatment of both GSH and GSSH with the dielectric barrier discharge (DBD) plasma, which corresponded to glutathione sulfonic acid GSO3H. The ESI-MS measurements confirmed the presence of glutathione sulfonic acid. In our experiments, involving either iron(II) or iron(III) complexes, glutathione sulfonic acid GSO3H appeared as the main oxidation product. This is in sharp contrast to GSH/GSSG treatment with DBD plasma in the absence of metal ions, which gave a wild mixture of products. Also interesting, no nitrosylation of GSH/GSSG was oberved in the presence of iron complexes, which seems to indicate a preferential oxygen activation chemistry by this transition metal ion.

3.
PLoS One ; 14(5): e0216606, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31067274

RESUMEN

Thiol moieties are major targets for cold plasma-derived nitrogen and oxygen species, making CAPs convenient tools to modulate redox-signaling pathways in cells and tissues. The underlying biochemical pathways are currently under investigation but especially the role of CAP derived RNS is barely understood. Their potential role in protein thiol nitrosylation would be relevant in inflammatory processes such as wound healing and improving their specific production by CAP would allow for enhanced treatment options beyond the current application. The impact of a modified kINPen 09 argon plasma jet with nitrogen shielding on cysteine as a thiol-carrying model substance was investigated by FTIR spectroscopy and high-resolution mass spectrometry. The deposition of short-lived radical species was measured by electron paramagnetic resonance spectroscopy, long-lived species were quantified by ion chromatography (NO2-, NO3-) and xylenol orange assay (H2O2). Product profiles were compared to samples treated with the so-called COST jet, being introduced by a European COST initiative as a reference device, using both reference conditions as well as conditions adjusted to kINPen gas mixtures. While thiol oxidation was dominant under all tested conditions, an Ar + N2/O2 gas compositions combined with a nitrogen curtain fostered nitric oxide deposition and the desired generation of S-nitrosocysteine. Interestingly, the COST-jet revealed significant differences in its chemical properties in comparison to the kINPen by showing a more stable production of RNS with different gas admixtures, indicating a different •NO production pathway. Taken together, results indicate various chemical properties of kINPen and COST-jet as well as highlight the potential of plasma tuning not only by gas admixtures alone but by adjusting the surrounding atmosphere as well.


Asunto(s)
Nitrógeno/química , Nitrógeno/metabolismo , Oxígeno/química , Oxígeno/metabolismo , Gases em Plasma/química , Gases em Plasma/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Presión Atmosférica , Gases/química , Gases/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Transducción de Señal , Compuestos de Sulfhidrilo/química
4.
Sci Rep ; 7(1): 13828, 2017 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-29062059

RESUMEN

Cold atmospheric pressure plasmas are gaining increased interest in the medical sector and clinical trials to treat skin diseases are underway. Plasmas are capable of producing several reactive oxygen and nitrogen species (RONS). However, there are open questions how plasma-generated RONS interact on a molecular level in a biological environment, e.g. cells or cell components. The redox pair glutathione (GSH) and glutathione disulphide (GSSG) forms the most important redox buffer in organisms responsible for detoxification of intracellular reactive species. We apply Raman spectroscopy, mass spectrometry, and molecular dynamics simulations to identify the time-dependent chemical modifications on GSH and GSSG that are caused by dielectric barrier discharge under ambient conditions. We find GSSG, S-oxidised glutathione species, and S-nitrosoglutathione as oxidation products with the latter two being the final products, while glutathione sulphenic acid, glutathione sulphinic acid, and GSSG are rather reaction intermediates. Experiments using stabilized pH conditions revealed the same main oxidation products as were found in unbuffered solution, indicating that the dominant oxidative or nitrosative reactions are not influenced by acidic pH. For more complex systems these results indicate that too long treatment times can cause difficult-to-handle modifications to the cellular redox buffer which can impair proper cellular function.


Asunto(s)
Disulfuro de Glutatión/química , Glutatión/química , Gases em Plasma/farmacología , Glutatión/análisis , Glutatión/efectos de los fármacos , Disulfuro de Glutatión/análisis , Disulfuro de Glutatión/efectos de los fármacos , Humanos , Espectrometría de Masas , Oxidación-Reducción , Estrés Oxidativo , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA