Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37445615

RESUMEN

The transient receptor potential, the melastatin (TRPM) subfamily, which consists of eight known members, appears to have significant importance in melanoma progression, treatment, and prognosis. As several members were originally cloned from cancerous tissue, initial studies aimed towards identifying TRPM involvement in cancer progression and tumorigenesis. For relevance in skin cancer, previous research has shown roles for several TRPM members in skin cancer progression, growth, and patient prognosis. One unique member, TRPM2, appears to have notable therapeutic potential in the treatment of melanoma. Previous and recent studies have demonstrated increased TRPM2 expression levels in melanoma, as well as important roles for TRPM2 in melanoma growth, proliferation, and survival. TRPM2 is thus an emerging target in the treatment of melanoma, where TRPM2 antagonism may offer an additional treatment option for melanoma patients in the future.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Canales Catiónicos TRPM , Humanos , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/genética , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética
2.
Methods Mol Biol ; 2609: 213-226, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36515838

RESUMEN

Transient receptor potential melastatin-2 (TRPM2) is an emerging chemotherapeutic target due to its involvement in poly(ADP-ribose) metabolism and the ability to induce anticancer effects after antagonism of its functions. Normally functioning as a nonspecific cation channel that is activated by free ADP-ribose, TRPM2 is involved with many cellular processes, including the induction of cell death after oxidative stress. What is becoming clear is that antagonism of TRPM2 selectively induces anticancer effects in several types of cancer. We previously demonstrated decreased growth and proliferation, increased levels of DNA damage, and the selective induction of cell death in breast cancer and melanoma cells. Due to these effects, it appears that TRPM2 has a novel role in cancer cells. Further, this novel role appears to involve nuclear function, because our studies, as well as those from other independent groups, demonstrate a nuclear localization of TRPM2 in various types of cancers. Thus, as an emerging therapeutic target, it is important to describe research techniques that can be utilized to analyze TRPM2 function, determine its effects in cancerous and noncancerous cells, and provide molecular biological methods to inhibit or downregulate its function.


Asunto(s)
Adenosina Difosfato Ribosa , Canales Catiónicos TRPM , Adenosina Difosfato Ribosa/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Muerte Celular , Estrés Oxidativo/fisiología , Cationes/metabolismo , Calcio/metabolismo
3.
Int J Oncol ; 60(4)2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35234266

RESUMEN

Melanoma continues to be the most aggressive and devastating form of skin cancer for which the development of novel therapies is required. The present study aimed to determine the effects of antagonism of the transient receptor potential melastatin­2 (TRPM2) ion channel in primary human malignant melanoma cells. TRPM2 antagonism via use of the antifungal agent, clotrimazole, led to decreases in cell proliferation, as well as dose­dependent increases in cell death in all melanoma cell lines investigated. The targeting of TRPM2 channels was verified using TRPM2 knockdown, where treatment with TRPM2 small­interfering RNA led to similar levels of cell death in all melanoma cell lines when compared with clotrimazole treatment. Minimal effects on proliferation and cell death were observed following antagonism or knockdown of TRPM2 in non­cancerous human keratinocytes. Moreover, characteristics of TRPM2 were explored in these melanoma cells and the results demonstrated that TRPM2, localized to the plasma membrane as a non­specific ion channel in non­cancerous cells, displayed a nuclear localization in all human melanoma cell lines analyzed. Additional characterization of these melanoma cell lines confirmed that each expressed one or more established multidrug resistance genes. Results of the present study therefore indicated that antagonism of the TRPM2 channel led to antitumor effects in human melanoma cells, including those that are potentially unresponsive to current treatments due to the expression of drug resistance genes. The unique cellular localization of TRPM2 and the specificity of the antitumor effects elicited by TRPM2 antagonism suggested that TRPM2 possesses a unique role in melanoma cells. Collectively, the targeting of TRPM2 represents a potentially novel, efficacious and readily accessible treatment option for patients with melanoma.


Asunto(s)
Línea Celular Tumoral/metabolismo , Melanoma/genética , Melanoma/prevención & control , Canales Catiónicos TRPM/antagonistas & inhibidores , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral/fisiología , Proliferación Celular/efectos de los fármacos , Humanos , Melanoma/tratamiento farmacológico
4.
Oncol Rep ; 34(3): 1589-98, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26178079

RESUMEN

We previously demonstrated a unique protective role for the transient receptor potential, melastatin-2 (TRPM2) cation channel in breast cancer cells. In the present study, we investigated the chemotherapeutic effects elicited by inhibiting this protective role in metastatic breast adenocarcinoma cells. TRPM2 inhibition led to dose-dependent increases in MDA-MB-231 breast adenocarcinoma cell death after treatment with doxorubicin or the DNA-methylating agent, N-methyl-N'-nitro-N-nitrosoguanidine. Similar results were observed after RNAi silencing of TRPM2 in these cells after doxorubicin treatment. However, TRPM2 RNAi silencing also led to increased MCF-7 breast adenocarcinoma cell death after tamoxifen treatment, yet not in non-cancerous human mammary epithelial cells. These results thus revealed that TRPM2 inhibition selectively increased cytotoxicity in a triple-negative and an estrogen receptor-positive breast cancer cell line, with minimal deleterious effects in non-cancerous breast cells. Analysis of DNA damage revealed enhanced DNA damage levels in MCF-7 cells treated with doxorubicin due to TRPM2 inhibition. Analysis of cell death demonstrated that inhibition of apoptosis, caspase-independent cell death or autophagy failed to significantly reduce cell death induced by TRPM2 inhibition and chemotherapy. These results indicate that TRPM2 inhibition activates alternative pathways of cell death in breast cancer cells. Taken together, our results provide significant evidence that TRPM2 inhibition is a potential strategy to induce triple-negative and estrogen receptor-positive breast adenocarcinoma cell death via alternative cell death pathways. This is expected to provide a basis for inhibiting TRPM2 for the improved treatment of breast cancer, which potentially includes treating breast tumors that are resistant to chemotherapy due to their evasion of apoptosis.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Canales Catiónicos TRPM/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patología , Autofagia/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Doxorrubicina/administración & dosificación , Femenino , Humanos , Células MCF-7 , Receptores de Estrógenos/genética , Canales Catiónicos TRPM/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
5.
Int J Oncol ; 46(5): 2267-76, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25760245

RESUMEN

Transient receptor potential, melastatin-2 (TRPM2) is a plasma membrane cation channel with important roles in sensory functions and promoting cell death. However, we demonstrated here that TRPM2 was present in the nuclei of MCF-7 and MDA-MB-231 human breast adenocarcinoma cells, and its pharmacologic inhibition or RNAi silencing caused decreased cell proliferation. Neither an effect on proliferation nor a localization of TRPM2 in the nucleus was observed in noncancerous HMEC and MCF-10A human mammary epithelial cells. Investigation of possible effects of TRPM2 function in the nucleus demonstrated that pharmacologic inhibition or RNAi silencing of TRPM2 in MCF-7 and MDA-MB-231 human breast adenocarcinoma cells caused up to 4-fold increases in DNA damage levels, as compared to noncancerous breast cells after equivalent treatments. These results indicate that TRPM2 has a novel nuclear function in human breast adenocarcinoma cells that facilitates the integrity of genomic DNA, a finding that is distinct from its previously reported role as a plasma membrane cation channel in noncancerous cells. In summary, we report here a novel effect promoted by TRPM2, where it functions to minimize DNA damage and thus may have a role in the protection of genomic DNA in breast cancer cells. Our study therefore provides compelling evidence that TRPM2 has a unique role in breast adenocarcinoma cells. Accordingly, these studies suggest that TRPM2 is a potential therapeutic target, where its pharmacologic inhibition may provide an innovative strategy to selectively increase DNA damage levels in breast cancer cells.


Asunto(s)
Adenocarcinoma/patología , Neoplasias de la Mama/patología , Proliferación Celular , Daño del ADN/fisiología , Canales Catiónicos TRPM/metabolismo , Línea Celular Tumoral , Proliferación Celular/fisiología , Ensayo Cometa , Humanos , Immunoblotting , Interferencia de ARN , Transfección
6.
J Transl Med ; 11: 239, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24283668

RESUMEN

BACKGROUND: The incidence and mortality of hepatitis C virus (HCV)-induced hepatocellular carcinoma (HCC) is higher in African Americans (AA) than other racial/ethnic groups in the U.S., but the reasons for this disparity are unknown. There is an urgent need for the discovery of novel molecular signatures for HCV disease progression to understand the underlying biological basis for this cancer rate disparity to improve the clinical outcome. METHODS: We performed differential proteomics with isobaric labeling tags for relative and absolute quantitation (iTRAQ) and MS/MS analysis to identify proteins differentially expressed in cirrhotic (CIR) and HCC as compared to normal tissues of Caucasian American (CA) patients. The raw data were analyzed using the ProteinPilot v3.0. Searches were performed against all known sequences populating the Swiss-Prot, Refseq, and TrEMBL databases. Quality control analyses were accomplished using pairwise correlation plots, boxplots, principal component analysis, and unsupervised hierarchical clustering. Supervised analysis was carried out to identify differentially expressed proteins. Candidates were validated in independent cohorts of CA and AA tissues by qRT-PCR or Western blotting. RESULTS: A total of 238 unique proteins were identified. Of those, around 15% were differentially expressed between normal, CIR & HCC groups. Target validation demonstrates racially distinct alteration in the expression of certain proteins. For example, the mRNA expression levels of transferrin (TF) were 2 and18-fold higher in CIR and HCC in AA as compared to CA. Similarly; the expression of Apolipoprotein A1 (APOA1) was 7-fold higher in HCC of AA. This increase was mirrored in the protein expression levels. Interestingly, the level of hepatocyte nuclear factor4a (HNF4a) protein was down regulated in AA, whereas repression of transcription is seen more in CA compared to AA. These data suggest that racial disparities in HCC could be a consequence of differential dysregulation of HNF4a transcriptional activity. CONCLUSION: This study identifies novel molecular signatures in HCV-induced HCC using iTRAQ-based tissue proteomics. The proteins identified will further enhance a molecular explanation to the biochemical mechanism(s) that may play a role in HCC racial disparities.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/virología , Hepacivirus/fisiología , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Proteómica/métodos , Grupos Raciales , Negro o Afroamericano/genética , Carcinoma Hepatocelular/genética , Análisis por Conglomerados , Bases de Datos de Proteínas , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Ontología de Genes , Humanos , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virología , Anotación de Secuencia Molecular , Proteínas de Neoplasias/genética , Grupos Raciales/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Transducción de Señal/genética , Población Blanca/genética
7.
Int Rev Cell Mol Biol ; 304: 227-81, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23809438

RESUMEN

Poly(ADP-ribose) glycohydrolase (PARG) is the primary enzyme that catalyzes the hydrolysis of poly(ADP-ribose) (PAR), an essential biopolymer that is synthesized by poly(ADP-ribose) polymerases (PARPs) in the cell. By regulating the hydrolytic arm of poly(ADP-ribosyl)ation, PARG participates in a number of biological processes, including the repair of DNA damage, chromatin dynamics, transcriptional regulation, and cell death. Collectively, the research investigating the roles of PARG in the cell has identified the importance of PARG and its value as a therapeutic target. However, the biological role of PARG remains less understood than the role of PAR synthesis by the PARPs. Further complicating the study of PARG is the existence of multiple PARG isoforms in the cell, the lack of optimal PARG inhibitors, and the lack of viable PARG-null animals. This review will present our current knowledge of PARG, with a focus on its roles in DNA-damage repair and cell death.


Asunto(s)
Apoptosis , Daño del ADN , Glicósido Hidrolasas/metabolismo , Animales , Reparación del ADN , Humanos , Hidrólisis , Poli Adenosina Difosfato Ribosa/biosíntesis , Poli Adenosina Difosfato Ribosa/química
8.
Int J Oncol ; 42(2): 749-56, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23254695

RESUMEN

The genome-protecting role of poly(ADP-ribose) (PAR) has identified PAR polymerase-1 (PARP-1) and PAR glycohydrolase (PARG), two enzymes responsible for the synthesis and hydrolysis of PAR, as chemotherapeutic targets. Each has been previously individually evaluated in chemotherapy, but the effects of combination PARP-1 and PARG inhibition in cancer cells are not known. Here we determined the effects of the inhibition of PARP-1 and the absence or RNAi knockdown of PARG on PAR synthesis, cell death after chemotherapy and long-term viability. Using three experimental/clinical PARP-1 inhibitors in PARG-null cells, we show decreased levels of PAR and increased short­term and long­term viability with each inhibitor, with the exception of DPQ. Treatment with the experimental chemotherapeutic agent, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), led to increased cell death in PARG-null cells, but decreased cell death when pretreated with each PARP-1 inhibitor. Similar results were observed in MNNG-treated HeLa cells, where RNAi knockdown of PARG or pretreatment with ABT-888 led to increased HeLa cell death, whereas combination PARG RNAi knockdown + ABT-888 failed to produce increased cell death. The results demonstrate the ability of the PARP-1 inhibitors to decrease PAR levels, maintain viability and decrease PAR-mediated cell death after chemotherapeutic treatment in the absence of PARG. Further, the results demonstrate that the combination of PARP-1 and PARG inhibition in chemotherapy does not produce increased HeLa cell death. Thus, the results indicate that inhibiting both PARP-1 and PARG, which both are chemotherapeutic targets that increase cancer cell death, does not lead to synergistic cell death in HeLa cells. Therefore, strategies that target PAR metabolism for the improved treatment of cancer may be required to target PARP-1 and PARG individually in order to optimize cancer cell death.


Asunto(s)
Glicósido Hidrolasas/metabolismo , Neoplasias/enzimología , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Bencimidazoles/farmacología , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Inhibidores Enzimáticos/farmacología , Técnicas de Silenciamiento del Gen , Glicósido Hidrolasas/antagonistas & inhibidores , Células HeLa , Humanos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Poli(ADP-Ribosa) Polimerasa-1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas
9.
Mol Cancer ; 11: 48, 2012 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-22839996

RESUMEN

BACKGROUND: Cell death induced by poly(ADP-ribose) (PAR) and mediated by apoptosis-inducing factor (AIF) is well-characterized in models of ischemic tissue injury, but their roles in cancer cell death after chemotherapy are less understood. METHODS: Here we investigated the roles of PAR and AIF by RNA interference (RNAi) in MDA-MB-231 and MCF-7 breast adenocarcinoma cells after chemotherapy. Differences in effects were statistically tested by analysis-of-variance and unpaired student's t-test. RESULTS: Silencing of AIF by RNAi led to decreased MDA-MB-231 and MCF-7 breast cancer cell death after chemotherapy, which demonstrates a critical role for AIF. RNAi silencing of PAR glycohydrolase (PARG), the primary enzyme that catalyzes the hydrolysis of PAR, led to increased PAR levels but decreased cell death. Further investigation into the possible role of PAR in apoptosis revealed decreased caspase-3/7/8/9 activity in PARG-null cells. Interestingly, the pharmacologic inhibition of caspase activity in PARG-silenced breast cancer cells led to increased cell death after chemotherapy, which indicates that an alternative cell death pathway is activated due to elevated PAR levels and caspase inhibition. AIF silencing in these cells led to profound protection from chemotherapy, which demonstrates that the increased cell death after PARG silencing and caspase inhibition was mediated by AIF. CONCLUSIONS: The results show a role for AIF in breast cancer cell death after chemotherapy, the ability of PAR to regulate caspase activity, and the ability of AIF to substitute as a primary mediator of breast cancer cell death in the absence of caspases. Thus, the induction of cell death by PAR/AIF may represent a novel strategy to optimize the eradication of breast tumors by activating an alternative cell death pathway.


Asunto(s)
Factor Inductor de la Apoptosis/genética , Neoplasias de la Mama/genética , Silenciador del Gen , Glicósido Hidrolasas/genética , Transporte Activo de Núcleo Celular , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Factor Inductor de la Apoptosis/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Caspasa 8/metabolismo , Muerte Celular/genética , Línea Celular Tumoral , Núcleo Celular/metabolismo , Daño del ADN/efectos de los fármacos , Femenino , Glicósido Hidrolasas/metabolismo , Humanos , Interferencia de ARN
10.
Methods Mol Biol ; 780: 337-48, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21870270

RESUMEN

Studies suggest that inhibiting the hydrolysis of poly(ADP-ribose) (PAR) by targeting the enzyme PAR glycohydrolase (PARG) is a potential chemotherapeutic strategy to induce cell death. However, the lack of structural data for PARG has hindered the discovery of specific PARG inhibitors and thus hampered the search for cellular effects dependent on the hydrolysis of PAR. We previously generated a murine PARG null cell model to identify the intracellular processes mediated by PARG. Using this system, the only mammalian system to date that completely lacks PARG activity, we have shown that the absence of PARG leads to massive amounts of cell death due to increased levels of PAR. Further, we have shown that PARG null-TS cells exhibit profound hypersensitivity to low doses of DNA-damaging agents. This hypersensitivity most likely results from the high levels of DNA damage that occur after treatment of these cells with nonlethal doses of DNA-damaging agents.


Asunto(s)
Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Western Blotting , Ensayo Cometa , Daño del ADN/genética , Daño del ADN/fisiología , Electroforesis en Gel de Poliacrilamida , Ratones , Poli(ADP-Ribosa) Polimerasas/genética
11.
Int J Oncol ; 39(1): 121-7, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21519789

RESUMEN

DNA-alkylating agents in combination with poly (ADP-ribose) (PAR) synthesis inhibitors are a promising treatment for cancer. In search of other efficacious alternatives, we hypothesized that the absence of poly(ADP-ribose) glycohydrolase (PARG), which leads to the inhibition of PAR hydrolysis, would lead to increased DNA alkylation after treatment with low doses of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). At a sublethal dose, MNNG shows synergistic cytotoxicity in PARG-null embryonic trophoblast stem (TS) cells. The PAR modifications of histone H1 and histone H2B are much more pronounced in PARG null-TS cells exposed to MNNG, suggesting their relevance in the efficacy of this combination therapy. Because the PAR modification of these chromatin binding proteins leads to chromatin remodeling, a possible mechanism for the observed synergistic effects involves the subsequent decondensation of chromatin, which may cause the genomic DNA to be more accessible to MNNG alkylation. Further analysis demonstrated chromatin decondensation in PARG null-TS cells as visualized by electron microscopy. In addition, treatment with MNNG led to an increase in O6- methylguanine levels in PARG null-TS cells compared to wild-type, which demonstrates increased DNA alkylation in the absence of PARG. Taken together, we provide compelling evidence that the absence of PARG leads to chromatin decondensation, which in turn leads to increased amounts of DNA alkylation and cell death induced by low doses of MNNG. Therefore, combination therapy of PARG inhibition and a DNA- alkylating agent is a potential treatment to induce the death of cancer cells.


Asunto(s)
Alquilantes/farmacología , Cromatina/metabolismo , Glicósido Hidrolasas/antagonistas & inhibidores , Nitrosoguanidinas/farmacología , Alquilación/efectos de los fármacos , Animales , Muerte Celular/efectos de los fármacos , Células Cultivadas , Cromatina/efectos de los fármacos , ADN/efectos de los fármacos , ADN/metabolismo , Sinergismo Farmacológico , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/ultraestructura , Histonas/metabolismo , Humanos , Ratones
12.
Biochemistry ; 50(14): 2850-9, 2011 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-21366272

RESUMEN

We previously demonstrated that the absence of poly(ADP-ribose) glycohydrolase (PARG) led to increased cell death following DNA-damaging treatments. Here, we investigated cell death pathways following UV treatment. Decreased amounts of PARG-null embryonic trophoblast stem (TS) cells were observed following doses of 10-100 J/m2 as compared to wild-type cells. In wild-type cells, caspase-cleaved poly(ADP-ribose) polymerase-1 (PARP-1) and activated caspase-3 were detected 12-24 h after UV treatment. Surprisingly, both were detected at decreased levels only after 24 h in PARG-null TS cells, indicating a decreased level and delayed presence of caspase-mediated events. Further, a time- and dose-dependent accumulation of poly(ADP-ribose) (PAR) levels after UV was observed in PARG-null TS cells and not in wild-type cells. Determination of the levels of nicotinamide adenine dinucleotide (NAD+), the substrate for PAR synthesis and a coenzyme in cellular redox reactions, demonstrated a UV dose-dependent decrease in the level of NAD+ in wild-type cells, while NAD+ levels in PARG-null TS cells remained at higher levels. This indicates no depletion of NAD+ in PARG-null TS cells following increased levels of PAR. Lastly, cell death mediated by apoptosis-inducing factor (AIF) was analyzed because of its dependence on increased PAR levels. The results demonstrate nuclear AIF translocation only in PARG-null TS cells, which demonstrates the presence of AIF-mediated cell death. Herein, we provide compelling evidence that the absence of PARG leads to decreased caspase-3 activity and the specific activation of AIF-mediated cell death. Therefore, the absence of PARG may provide a strategy for specifically inducing an alternative apoptotic pathway.


Asunto(s)
Factor Inductor de la Apoptosis/metabolismo , Apoptosis , Células Madre Embrionarias/metabolismo , Glicósido Hidrolasas/metabolismo , Animales , Factor Inductor de la Apoptosis/genética , Benzamidas/farmacología , Caspasa 3/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Relación Dosis-Respuesta en la Radiación , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/efectos de la radiación , Glicósido Hidrolasas/genética , Immunoblotting , Ratones , Ratones Noqueados , Microscopía Confocal , Mitocondrias/metabolismo , NAD/metabolismo , Poli Adenosina Difosfato Ribosa/antagonistas & inhibidores , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/efectos de la radiación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Trofoblastos/citología , Rayos Ultravioleta
13.
Biochemistry ; 49(34): 7360-6, 2010 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-20687516

RESUMEN

Poly(ADP-ribose) (PAR) is a therapeutic target primarily identified through inhibiting its synthesis by PAR polymerase-1 (PARP-1). However, inhibiting its hydrolysis by PAR glycohydrolase (PARG) has therapeutic potential in cancer. Unknown is the effect of elevated PAR levels on cellular processes and if this effect can enhance the therapeutic value of PARG. Here, we demonstrate in PARG null embryonic trophoblast stem (TS) cells that the absence of PAR hydrolysis led to PAR-modified histones H1, H2A, and H2B. To determine if this led to the differential vulnerability of DNA to modification, TS cells were treated with DNA-modifying agents. The results demonstrate increased DNA laddering by micrococcal nuclease and an increased amount of DNA intercalation by acridine orange in PARG null-TS cells. This increased access to PARG null-TS cell DNA was further verified by the detection of increased DNA damage following treatment with UV radiation and a minimal dose of the DNA-alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine. Further, this DNA damage was predominantly unrepaired 12 h after treatment in PARG null-TS cells. Finally, TS cells were treated with DNA-modifying chemotherapeutic agents. The results demonstrate up to 4-fold increases in cell death in PARG null-TS cells after treatment with epirubicin or sub-IC(50) doses of cisplatin and cyclophosphamide. Taken together, we provide compelling evidence that increased DNA access induced by the absence of PARG enhances the efficacy of DNA-modifying agents. Thus, this study demonstrates that greater DNA accessibility, increased DNA damage, and increased cell death all contribute to the PARG null cell phenotype in response to genotoxic stress.


Asunto(s)
Daño del ADN , Adenosina Difosfato Ribosa/genética , Adenosina Difosfato Ribosa/metabolismo , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , ADN/genética , ADN/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Histonas/genética , Histonas/metabolismo , Hidrólisis , Metilnitronitrosoguanidina/metabolismo , Metilnitronitrosoguanidina/farmacología , Neutrófilos/metabolismo , Poli Adenosina Difosfato Ribosa/genética , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Células Madre/metabolismo , Trofoblastos/metabolismo
14.
Proc Natl Acad Sci U S A ; 103(48): 18308-13, 2006 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-17116882

RESUMEN

Excessive activation of the nuclear enzyme, poly(ADP-ribose) polymerase-1 (PARP-1) plays a prominent role in various of models of cellular injury. Here, we identify poly(ADP-ribose) (PAR) polymer, a product of PARP-1 activity, as a previously uncharacterized cell death signal. PAR polymer is directly toxic to neurons, and degradation of PAR polymer by poly(ADP-ribose) glycohydrolase (PARG) or phosphodiesterase 1 prevents PAR polymer-induced cell death. PARP-1-dependent, NMDA excitotoxicity of cortical neurons is reduced by neutralizing antibodies to PAR and by overexpression of PARG. Neuronal cultures with reduced levels of PARG are more sensitive to NMDA excitotoxicity than WT cultures. Transgenic mice overexpressing PARG have significantly reduced infarct volumes after focal ischemia. Conversely, mice with reduced levels of PARG have significantly increased infarct volumes after focal ischemia compared with WT littermate controls. These results reveal PAR polymer as a signaling molecule that induces cell death and suggests that interference with PAR polymer signaling may offer innovative therapeutic approaches for the treatment of cellular injury.


Asunto(s)
Apoptosis/efectos de los fármacos , Poli Adenosina Difosfato Ribosa/toxicidad , Polímeros/toxicidad , Transducción de Señal , Animales , Caspasas/metabolismo , Células Cultivadas , Ratones , Peso Molecular , Neuronas/efectos de los fármacos , Poli Adenosina Difosfato Ribosa/química , Poli(ADP-Ribosa) Polimerasas/metabolismo , Polímeros/química
15.
J Cereb Blood Flow Metab ; 26(1): 135-41, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15959455

RESUMEN

Poly(ADP-ribose) polymerase-2 (PARP-2) is a member of the PARP enzyme family, and, similarly to PARP-1, catalyzes the formation of ADP-ribose polymers in response to DNA damage. While PARP-1 overactivation contributes to ischemic cell death, no information is available regarding the role of PARP-2. In this study, we evaluated the impact of PARP-2 deletion on histopathological outcome from two different experimental models of cerebral ischemia. Male PARP-2-/- mice and wild-type (WT) littermates were subjected to either 2 h of middle cerebral artery occlusion (MCAO) followed by 22 h reperfusion, or underwent 10 mins of KCl-induced cardiac arrest (CA) followed by cardiopulmonary resuscitation (CPR) and 3-day survival. After MCAO, infarct volume was reduced in PARP-2-/- mice (38%+/-12% of contralateral hemisphere) compared with WT (64%+/-16%). After CA/CPR, PARP-2 deletion significantly increased neuronal cell loss in the hippocampal CA1 field (65%+/-36% ischemic neurons) when compared with WT mice (31%+/-33%), with no effect in either striatum or cortex. We conclude that PARP-2 is a novel executioner of cell death pathways in focal cerebral ischemia, but might be a necessary survival factor after global ischemia to mitigate hippocampal delayed cell death.


Asunto(s)
Isquemia Encefálica/metabolismo , Poli(ADP-Ribosa) Polimerasas/deficiencia , Poli(ADP-Ribosa) Polimerasas/metabolismo , Animales , Isquemia Encefálica/etiología , Isquemia Encefálica/patología , Reanimación Cardiopulmonar , Muerte Celular/fisiología , Modelos Animales de Enfermedad , Paro Cardíaco/inducido químicamente , Paro Cardíaco/complicaciones , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Masculino , Ratones , Ratones Noqueados , Cloruro de Potasio/química , Reperfusión
16.
Pharmacol Res ; 52(1): 5-14, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15911329

RESUMEN

Poly(ADP-ribosyl)ation plays an important role in modulating the cellular response to stress. The extent of poly(ADP-ribosyl)ation, chiefly via the activation of the poly(ADP-ribose) polymerase-1 (PARP-1), correlates with the severity of genotoxic stress and this determines the cellular response. Under mild and moderate stress, it plays important roles in DNA processing and it participates in the proinflammatory/cellular defense via transcriptional regulation. However, severe stress following acute neuronal injury causes the overactivation of PARP-1, which results in unregulated poly(ADP-ribose) (PAR) synthesis and widespread neuronal cell death. Previously, this PARP-1-dependent cell death mechanism was manifest solely through necrosis, but apoptotic mechanisms are also evident. Poly(ADP-ribosyl)ation directly induces the nuclear translocation of apoptosis-inducing factor, which results in caspase-independent cell death significant in many neurodegenerative conditions. Further, the hydrolysis of PAR by poly(ADP-ribose) glycohydrolase (PARG) has a protective role, since the accumulation of PAR leads to cell death by apoptosis. Thus, PAR signaling, regulated by PARP-1 and PARG, mediates cell death. Accordingly, modulation of PAR synthesis or degradation through the targeting of PARP-1 or PARG holds particular promise in the treatment of conditions such as cancer, stroke, and Parkinson's disease.


Asunto(s)
Apoptosis , Poli(ADP-Ribosa) Polimerasas/fisiología , Animales , Factor Inductor de la Apoptosis , Lesiones Encefálicas/tratamiento farmacológico , Inhibidores Enzimáticos/uso terapéutico , Flavoproteínas/fisiología , Glicósido Hidrolasas/fisiología , Humanos , Proteínas de la Membrana/fisiología , FN-kappa B/fisiología , Necrosis , Neuronas/patología , Enfermedad de Parkinson/tratamiento farmacológico , Poli(ADP-Ribosa) Polimerasa-1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Accidente Cerebrovascular/tratamiento farmacológico
17.
Cell Cycle ; 4(3): 397-9, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15725727

RESUMEN

Unlike poly(ADP-ribose) polymerase-1 (PARP-1), poly(ADP-ribose) glycohydrolase (PARG) has long been a difficult protein to study. However, the complete absence of PARG activity was recently characterized in mice via disruption of the murine PARG gene. As expected, PARG is critical for the maintenance of steady-state poly(ADP-ribose) levels. But surprisingly, the disruption of PARG led to embryonic lethality and increased susceptibility to mild cell stress. Therefore, the protective role of PARG and its involvement in development indicate that these roads to viability go through PARG.


Asunto(s)
Ciclo Celular , Regulación de la Expresión Génica , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/fisiología , Animales , Supervivencia Celular , Daño del ADN , Ratones , Ratones Transgénicos , Modelos Biológicos , Mutación , Polímeros/química
18.
Biochem J ; 388(Pt 2): 493-500, 2005 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15658938

RESUMEN

PARG [poly(ADP-ribose) glycohydrolase] catalyses the hydrolysis of alpha(1''-->2') or alpha(1'''-->2'') O-glycosidic linkages of ADP-ribose polymers to produce free ADP-ribose. We investigated possible mechanistic similarities between PARG and glycosidases, which also cleave O-glycosidic linkages. Glycosidases typically utilize two acidic residues for catalysis, thus we targeted acidic residues within a conserved region of bovine PARG that has been shown to contain an inhibitor-binding site. The targeted glutamate and aspartate residues were changed to asparagine in order to minimize structural alterations. Mutants were purified and assayed for catalytic activity, as well as binding, to an immobilized PARG inhibitor to determine ability to recognize substrate. Our investigation revealed residues essential for PARG catalytic activity. Two adjacent glutamic acid residues are found in the conserved sequence Gln755-Glu-Glu757, and a third residue found in the conserved sequence Val737-Asp-Phe-Ala-Asn741. Our functional characterization of PARG residues, along with recent identification of an inhibitor-binding residue Tyr796 and a glycine-rich region Gly745-Gly-Gly747 important for PARG function, allowed us to define a PARG 'signature sequence' [vDFA-X3-GGg-X6-8-vQEEIRF-X3-PE-X14-E-X12-YTGYa], which we used to identify putative PARG sequences across a range of organisms. Sequence alignments, along with our mapping of PARG functional residues, suggest the presence of a conserved catalytic domain of approx. 185 residues which spans residues 610-795 in bovine PARG.


Asunto(s)
Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Glicósido Hidrolasas/antagonistas & inhibidores , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido
19.
Proc Natl Acad Sci U S A ; 101(51): 17699-704, 2004 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-15591342

RESUMEN

The metabolism of poly(ADP-ribose) (PAR) is critical for genomic stability in multicellular eukaryotes. Here, we show that the failure to degrade PAR by means of disruption of the murine poly(ADP-ribose) glycohydrolase (PARG) gene unexpectedly causes early embryonic lethality and enhanced sensitivity to genotoxic stress. This lethality results from the failure to hydrolyze PAR, because PARG null embryonic day (E) 3.5 blastocysts accumulate PAR and concurrently undergo apoptosis. Moreover, embryonic trophoblast stem cell lines established from early PARG null embryos are viable only when cultured in medium containing the poly(ADP-ribose) polymerase inhibitor benzamide. Cells lacking PARG also show reduced growth, accumulation of PAR, and increased sensitivity to cytotoxicity induced by N-methyl-N'-nitro-N-nitrosoguanidine and menadione after benzamide withdrawal. These results provide compelling evidence that the failure to degrade PAR has deleterious consequences. Further, they define a role for PARG in embryonic development and a protective role in the response to genotoxic stress.


Asunto(s)
Pérdida del Embrión/inducido químicamente , Pérdida del Embrión/metabolismo , Glicósido Hidrolasas/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Animales , Apoptosis , Blastocisto/citología , Blastocisto/metabolismo , Proliferación Celular , Pérdida del Embrión/embriología , Pérdida del Embrión/enzimología , Femenino , Glicósido Hidrolasas/deficiencia , Glicósido Hidrolasas/genética , Metilnitronitrosoguanidina/farmacología , Metilnitronitrosoguanidina/toxicidad , Ratones , Ratones Noqueados , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/metabolismo , Embarazo , Trofoblastos/citología , Trofoblastos/metabolismo , Vitamina K 3/farmacología , Vitamina K 3/toxicidad
20.
J Neurosci ; 24(48): 10963-73, 2004 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-15574746

RESUMEN

The profound neuroprotection observed in poly(ADP-ribose) polymerase-1 (PARP-1) null mice to ischemic and excitotoxic injury positions PARP-1 as a major mediator of neuronal cell death. We report here that apoptosis-inducing factor (AIF) mediates PARP-1-dependent glutamate excitotoxicity in a caspase-independent manner after translocation from the mitochondria to the nucleus. In primary murine cortical cultures, neurotoxic NMDA exposure triggers AIF translocation, mitochondrial membrane depolarization, and phosphatidyl serine exposure on the cell surface, which precedes cytochrome c release and caspase activation. NMDA neurotoxicity is not affected by broad-spectrum caspase inhibitors, but it is prevented by Bcl-2 overexpression and a neutralizing antibody to AIF. These results link PARP-1 activation with AIF translocation in NMDA-triggered excitotoxic neuronal death and provide a paradigm in which AIF can substitute for caspase executioners.


Asunto(s)
Apoptosis/efectos de los fármacos , Agonistas de Aminoácidos Excitadores/toxicidad , Flavoproteínas/fisiología , Proteínas de la Membrana/fisiología , N-Metilaspartato/toxicidad , Neuronas/efectos de los fármacos , Transporte Activo de Núcleo Celular , Animales , Apoptosis/fisiología , Factor Inductor de la Apoptosis , Caspasas/fisiología , Células Cultivadas/citología , Células Cultivadas/efectos de los fármacos , Células Cultivadas/fisiología , Corteza Cerebral/citología , Corteza Cerebral/embriología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , Citocromos c/análisis , Daño del ADN , Activación Enzimática/efectos de los fármacos , Genes bcl-2 , Ácido Glutámico/fisiología , Inyecciones , Membranas Intracelulares/fisiología , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Neuronas/fisiología , Óxido Nítrico/fisiología , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/deficiencia , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/fisiología , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Proteínas Proto-Oncogénicas c-bcl-2/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Transfección , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...