Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6773, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880244

RESUMEN

Cholesterol is important for membrane integrity and cell signaling, and dysregulation of the distribution of cellular cholesterol is associated with numerous diseases, including neurodegenerative disorders. While regulated transport of a specific pool of cholesterol, known as "accessible cholesterol", contributes to the maintenance of cellular cholesterol distribution and homeostasis, tools to monitor accessible cholesterol in live cells remain limited. Here, we engineer a highly sensitive accessible cholesterol biosensor by taking advantage of the cholesterol-sensing element (the GRAM domain) of an evolutionarily conserved lipid transfer protein, GRAMD1b. Using this cholesterol biosensor, which we call GRAM-W, we successfully visualize in real time the distribution of accessible cholesterol in many different cell types, including human keratinocytes and iPSC-derived neurons, and show differential dependencies on cholesterol biosynthesis and uptake for maintaining levels of accessible cholesterol. Furthermore, we combine GRAM-W with a dimerization-dependent fluorescent protein (ddFP) and establish a strategy for the ultrasensitive detection of accessible plasma membrane cholesterol. These tools will allow us to obtain important insights into the molecular mechanisms by which the distribution of cellular cholesterol is regulated.


Asunto(s)
Técnicas Biosensibles , Colesterol , Humanos , Membrana Celular/metabolismo , Colesterol/metabolismo , Transporte Biológico , Homeostasis
2.
Nat Commun ; 14(1): 5867, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735529

RESUMEN

Abnormal distribution of cellular cholesterol is associated with numerous diseases, including cardiovascular and neurodegenerative diseases. Regulated transport of cholesterol is critical for maintaining its proper distribution in the cell, yet the underlying mechanisms remain unclear. Here, we show that lipid transfer proteins, namely ORP9, OSBP, and GRAMD1s/Asters (GRAMD1a/GRAMD1b/GRAMD1c), control non-vesicular cholesterol transport at points of contact between the ER and the trans-Golgi network (TGN), thereby maintaining cellular cholesterol distribution. ORP9 localizes to the TGN via interaction between its tandem α-helices and ORP10/ORP11. ORP9 extracts PI4P from the TGN to prevent its overaccumulation and suppresses OSBP-mediated PI4P-driven cholesterol transport to the Golgi. By contrast, GRAMD1s transport excess cholesterol from the Golgi to the ER, thereby preventing its build-up. Cells lacking ORP9 exhibit accumulation of cholesterol at the Golgi, which is further enhanced by additional depletion of GRAMD1s with major accumulation in the plasma membrane. This is accompanied by chronic activation of the SREBP-2 signalling pathway. Our findings reveal the importance of regulated lipid transport at ER-Golgi contacts for maintaining cellular cholesterol distribution and homeostasis.


Asunto(s)
Aparato de Golgi , Membranas Mitocondriales , Red trans-Golgi , Transporte Biológico , Colesterol
3.
EMBO J ; 40(6): e106524, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33604931

RESUMEN

Cholesterol is essential for cell physiology. Transport of the "accessible" pool of cholesterol from the plasma membrane (PM) to the endoplasmic reticulum (ER) by ER-localized GRAMD1 proteins (GRAMD1a/1b/1c) contributes to cholesterol homeostasis. However, how cells detect accessible cholesterol within the PM remains unclear. We show that the GRAM domain of GRAMD1b, a coincidence detector for anionic lipids, including phosphatidylserine (PS), and cholesterol, possesses distinct but synergistic sites for sensing accessible cholesterol and anionic lipids. We find that a mutation within the GRAM domain of GRAMD1b that is associated with intellectual disability in humans specifically impairs cholesterol sensing. In addition, we identified another point mutation within this domain that enhances cholesterol sensitivity without altering its PS sensitivity. Cell-free reconstitution and cell-based assays revealed that the ability of the GRAM domain to sense accessible cholesterol regulates membrane tethering and determines the rate of cholesterol transport by GRAMD1b. Thus, cells detect the codistribution of accessible cholesterol and anionic lipids in the PM and fine-tune the non-vesicular transport of PM cholesterol to the ER via GRAMD1s.


Asunto(s)
Transporte Biológico/genética , Membrana Celular/metabolismo , Colesterol/metabolismo , Proteínas de la Membrana/metabolismo , Sustitución de Aminoácidos/genética , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Predisposición Genética a la Enfermedad/genética , Células HeLa , Humanos , Discapacidad Intelectual/genética , Proteínas de la Membrana/genética , Fosfatidilserinas/metabolismo , Mutación Puntual/genética , Dominios Proteicos
4.
Cell Cycle ; 19(4): 405-418, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31944151

RESUMEN

Protein-protein interaction network analysis plays critical roles in predicting the functions of target proteins. In this study, we used a combination of SILAC-MS proteomics and bioinformatic approaches to identify Checkpoint Kinase 1 (Chk1) as a possible POPX2 phosphatase interacting protein. POPX2 is a PP2C phosphatase that has been implicated in cancer cell invasion and migration. From the Domain-Domain Interaction (DDI) database, we first determined that the PP2C phosphatase domain interacts with Pkinase domain. Subsequently, 46 proteins with Pkinase domain were identified from POPX2 SILAC-MS data. We then narrowed down the leads and confirmed the biological interaction between Chk1 and POPX2. We also found that Chk1 is a substrate of POPX2. Chk1 is a key regulator of the cell cycle and is activated when the cell suffers DNA damage. Our approach has led us to identify POPX2 as a regulator of Chk1 and can interfere with the normal function of Chk1 at G1-S transition of the cell cycle in response to DNA damage.


Asunto(s)
Ciclo Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Secuencia de Aminoácidos , Línea Celular , Daño del ADN , Silenciador del Gen , Humanos , Modelos Biológicos , Fosfoproteínas Fosfatasas/química , Fosforilación , Filogenia , Unión Proteica , Dominios Proteicos , Mapeo de Interacción de Proteínas , Reproducibilidad de los Resultados , Homología Estructural de Proteína , Especificidad por Sustrato
5.
Elife ; 82019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31724953

RESUMEN

Cholesterol is a major structural component of the plasma membrane (PM). The majority of PM cholesterol forms complexes with other PM lipids, making it inaccessible for intracellular transport. Transition of PM cholesterol between accessible and inaccessible pools maintains cellular homeostasis, but how cells monitor the accessibility of PM cholesterol remains unclear. We show that endoplasmic reticulum (ER)-anchored lipid transfer proteins, the GRAMD1s, sense and transport accessible PM cholesterol to the ER. GRAMD1s bind to one another and populate ER-PM contacts by sensing a transient expansion of the accessible pool of PM cholesterol via their GRAM domains. They then facilitate the transport of this cholesterol via their StART-like domains. Cells that lack all three GRAMD1s exhibit striking expansion of the accessible pool of PM cholesterol as a result of less efficient PM to ER transport of accessible cholesterol. Thus, GRAMD1s facilitate the movement of accessible PM cholesterol to the ER in order to counteract an acute increase of PM cholesterol, thereby activating non-vesicular cholesterol transport.


Asunto(s)
Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Complejos Multiproteicos/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Biológico/efectos de los fármacos , Células COS , Proteínas Portadoras/química , Membrana Celular/efectos de los fármacos , Chlorocebus aethiops , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Células HeLa , Humanos , Proteínas Mutantes/metabolismo , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Sirolimus/farmacología , Esfingomielinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...