Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
3.
Nat Commun ; 14(1): 281, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36650155

RESUMEN

Telomeres are specialized nucleoprotein structures at the ends of linear chromosomes. The progressive shortening of steady-state telomere length in normal human somatic cells is a promising biomarker for age-associated diseases. However, there remain substantial challenges in quantifying telomere length due to the lack of high-throughput method with nucleotide resolution for individual telomere. Here, we describe a workflow to capture telomeres using newly designed telobaits in human culture cell lines as well as clinical patient samples and measure their length accurately at nucleotide resolution using single-molecule real-time (SMRT) sequencing. Our results also reveal the extreme heterogeneity of telomeric variant sequences (TVSs) that are dispersed throughout the telomere repeat region. The presence of TVSs disrupts the continuity of the canonical (5'-TTAGGG-3')n telomere repeats, which affects the binding of shelterin complexes at the chromosomal ends and telomere protection. These findings may have profound implications in human aging and diseases.


Asunto(s)
Complejo Shelterina , Telómero , Humanos , Telómero/genética , Envejecimiento
4.
Cancer Res ; 82(14): 2538-2551, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35583999

RESUMEN

Mutations in the DNA mismatch repair gene MSH2 are causative of microsatellite instability (MSI) in multiple cancers. Here, we discovered that besides its well-established role in DNA repair, MSH2 exerts a novel epigenomic function in gastric cancer. Unbiased CRISPR-based mass spectrometry combined with genome-wide CRISPR functional screening revealed that in early-stage gastric cancer MSH2 genomic binding is not randomly distributed but rather is associated specifically with tumor-associated super-enhancers controlling the expression of cell adhesion genes. At these loci, MSH2 genomic binding was required for chromatin rewiring, de novo enhancer-promoter interactions, maintenance of histone acetylation levels, and regulation of cell adhesion pathway expression. The chromatin function of MSH2 was independent of its DNA repair catalytic activity but required MSH6, another DNA repair gene, and recruitment to gene loci by the SWI/SNF chromatin remodeler SMARCA4/BRG1. Loss of MSH2 in advanced gastric cancers was accompanied by deficient cell adhesion pathway expression, epithelial-mesenchymal transition, and enhanced tumorigenesis in vitro and in vivo. However, MSH2-deficient gastric cancers also displayed addiction to BAZ1B, a bromodomain-containing family member, and consequent synthetic lethality to bromodomain and extraterminal motif (BET) inhibition. Our results reveal a role for MSH2 in gastric cancer epigenomic regulation and identify BET inhibition as a potential therapy in MSH2-deficient gastric malignancies. SIGNIFICANCE: DNA repair protein MSH2 binds and regulates cell adhesion genes by enabling enhancer-promoter interactions, and loss of MSH2 causes deficient cell adhesion and bromodomain and extraterminal motif inhibitor synthetic lethality in gastric cancer.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Neoplasias Gástricas , Adhesión Celular/genética , Cromatina/genética , ADN Helicasas/genética , Reparación de la Incompatibilidad de ADN/genética , Proteínas de Unión al ADN/genética , Mutación de Línea Germinal , Humanos , Homólogo 1 de la Proteína MutL/genética , Proteína 2 Homóloga a MutS/genética , Proteínas Nucleares/genética , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Factores de Transcripción/genética
5.
Cell Stress Chaperones ; 24(4): 835-849, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31230214

RESUMEN

Bats, unique among mammals with powered flight, have many species with the longest size-proportionate lifespan of all mammals. Evolutionary adaptations would have been required to survive the elevated body temperatures during flight. Heat shock protein (HSP), highly conserved master regulators of cell stress, expression was examined across tissues and various cell lines in bats. Basal expression level of major HSPs (HSP70 and HSP90) is significantly higher in two different bat species compared to other mammals. This HSP expression could be a bat-unique, key factor to modulate cellular stress and death. Consequently, bat cells survive prolonged heat treatment, along with other stress stimuli, in a HSP-dependent manner, whereas other mammalian cells succumbed. This suggests HSP expression in bats could be an important adaption to intrinsic metabolic stresses like flight and therefore an important model to study stress resilience and longevity in general.


Asunto(s)
Quirópteros/metabolismo , Vuelo Animal/fisiología , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Respuesta al Choque Térmico/fisiología , Longevidad/fisiología , Estrés Oxidativo/fisiología , Adaptación Fisiológica/fisiología , Animales , Línea Celular , Humanos
6.
Nat Commun ; 10(1): 2820, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31249297

RESUMEN

Bats are unusual mammals, with the ability to fly, and long lifespans. In addition, bats have a low incidence of cancer, but the mechanisms underlying this phenomenon remain elusive. Here we discovered that bat cells are more resistant than human and mouse cells to DNA damage induced by genotoxic drugs. We found that bat cells accumulate less chemical than human and mouse cells, and efficient drug efflux mediated by the ABC transporter ABCB1 underlies this improved response to genotoxic reagents. Inhibition of ABCB1 triggers an accumulation of doxorubicin, DNA damage, and cell death. ABCB1 is expressed at higher levels in several cell lines and tissues derived from bats compared to humans. Furthermore, increased drug efflux and high expression of ABCB1 are conserved across multiple bat species. Our findings suggest that enhanced efflux protects bat cells from DNA damage induced by genotoxic compounds, which may contribute to their low cancer incidence.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Quirópteros/genética , Quirópteros/metabolismo , Daño del ADN/efectos de los fármacos , Mutágenos/toxicidad , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Animales , Muerte Celular/efectos de los fármacos , Línea Celular , Doxorrubicina/toxicidad , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...