Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vaccines (Basel) ; 12(7)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39066392

RESUMEN

Periodontal disease (PD) is caused by microbial dysbiosis and accompanying adverse inflammatory responses. Due to its high incidence and association with various systemic diseases, disease-modifying treatments that modulate dysbiosis serve as promising therapeutic approaches. In this study, to simulate the pathophysiological situation, we established a "temporary ligature plus oral infection model" that incorporates a temporary silk ligature and oral infection with a cocktail of live Tannerella forsythia (Tf), Pophyromonas gingivalis (Pg), and Fusobacterium nucleatum (Fn) in mice and tested the efficacy of a new trivalent mucosal vaccine. It has been reported that Tf, a red complex pathogen, amplifies periodontitis severity by interacting with periodontopathic bacteria such as Pg and Fn. Here, we developed a recombinant mucosal vaccine targeting a surface-associated protein, BspA, of Tf by genetically combining truncated BspA with built-in adjuvant flagellin (FlaB). To simultaneously induce Tf-, Pg-, and Fn-specific immune responses, it was formulated as a trivalent mucosal vaccine containing Tf-FlaB-tBspA (BtB), Pg-Hgp44-FlaB (HB), and Fn-FlaB-tFomA (BtA). Intranasal immunization with the trivalent mucosal vaccine (BtB + HB + BtA) prevented alveolar bone loss and gingival proinflammatory cytokine production. Vaccinated mice exhibited significant induction of Tf-tBspA-, Pg-Hgp44-, and Fn-tFomA-specific IgG and IgA responses in the serum and saliva, respectively. The anti-sera and anti-saliva efficiently inhibited epithelial cell invasion by Tf and Pg and interfered with biofilm formation by Fn. The flagellin-adjuvanted trivalent mucosal vaccine offers a novel method for modulating dysbiotic bacteria associated with periodontitis. This approach leverages the adjuvant properties of flagellin to enhance the immune response, aiming to restore a balanced microbial environment and improve periodontal health.

2.
Biomed Mater ; 19(4)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38740059

RESUMEN

Cell-based tissue engineering often requires the use of scaffolds to provide a three-dimensional (3D) framework for cell proliferation and tissue formation. Polycaprolactone (PCL), a type of polymer, has good printability, favorable surface modifiability, adaptability, and biodegradability. However, its large-scale applicability is hindered by its hydrophobic nature, which affects biological properties. Composite materials can be created by adding bioactive materials to the polymer to improve the properties of PCL scaffolds. Osteolectin is an odontogenic factor that promotes the maintenance of the adult skeleton by promoting the differentiation of LepR+ cells into osteoblasts. Therefore, the aim of this study was to evaluate whether 3D-printed PCL/osteolectin scaffolds supply a suitable microenvironment for the odontogenic differentiation of human dental pulp cells (hDPCs). The hDPCs were cultured on 3D-printed PCL scaffolds with or without pores. Cell attachment and cell proliferation were evaluated using EZ-Cytox. The odontogenic differentiation of hDPCs was evaluated by alizarin red S staining and alkaline phosphatase assays. Western blot was used to evaluate the expression of the proteins DSPP and DMP-Results: The attachment of hDPCs to PCL scaffolds with pores was significantly higher than to PCL scaffolds without pores. The odontogenic differentiation of hDPCs was induced more in PCL/osteolectin scaffolds than in PCL scaffolds, but there was no statistically significant difference. 3D-printed PCL scaffolds with pores are suitable for the growth of hDPCs, and the PCL/osteolectin scaffolds can provide a more favorable microenvironment for the odontogenic differentiation of hDPCs.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Pulpa Dental , Odontogénesis , Poliésteres , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido , Humanos , Pulpa Dental/citología , Poliésteres/química , Andamios del Tejido/química , Diferenciación Celular/efectos de los fármacos , Odontogénesis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ingeniería de Tejidos/métodos , Células Cultivadas , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Adhesión Celular/efectos de los fármacos , Osteoblastos/citología
3.
J Clin Med ; 13(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38610714

RESUMEN

Background: To evaluate the current evidence on clear aligners and root resorption using 3D and/or combined 2D and 3D methods from available systematic reviews and meta-analyses and to determine the relationship between root resorption and clear aligners using the AMSTAR 2 tool. Methods: A comprehensive literature search of systematic reviews investigating aligners and root resorption, published up until 31 December 2022, was conducted. The following electronic databases were searched: MEDLINE via PubMed, EMBASE, Google Scholar, Science Direct, Web of Science, Scopus, LIVIVO, and LILACS. There were no language restrictions. The inclusion criteria were restricted to studies focusing on root resorption utilizing either 3D methods exclusively or a combination of 2D and 3D techniques. Data were screened and analyzed for quality using the "A Measurement Tool to Assess Systematic Reviews (AMSTAR 2)" tool. Data extraction was conducted independently by two authors. The gathered information was categorized and synthesized narratively based on the primary findings elucidated within the reviews. Results: Out of a total of 1221 potentially eligible studies initially identified, 4 systematic reviews met the inclusion criteria following the exclusion of irrelevant studies. Among these, two systematic reviews (50%) were classified as low-quality, while the remaining two (50%) were deemed to be of critically low quality. Conclusions: Based on the findings of four systematic reviews, the root resorption rate was lower with the use of clear aligners than with fixed aligners. It is advisable to approach the interpretation of this conclusion with caution, as the quality of the available evidence is assessed to be very low. Higher quality systematic reviews are needed to substantiate this conclusion.

4.
J Cell Physiol ; 239(6): e31268, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38577903

RESUMEN

Several members of the transforming growth factor beta (TGF-ß) superfamily regulate the proliferation, differentiation, and function of bone-forming osteoblasts and bone-resorbing osteoclasts. However, it is still unknown whether Nodal, a member of the TGF-ß superfamily, serves a function in bone cells. In this study, we found that Nodal did not have any function in osteoblasts but instead negatively regulated osteoclast differentiation. Nodal inhibited RANKL-induced osteoclast differentiation by downregulating the expression of pro-osteoclastogenic genes, including c-fos, Nfatc1, and Blimp1, and upregulating the expression of antiosteoclastogenic genes, including Bcl6 and Irf8. Nodal activated STAT1 in osteoclast precursor cells, and STAT1 downregulation significantly reduced the inhibitory effect of Nodal on osteoclast differentiation. These findings indicate that Nodal activates STAT1 to downregulate or upregulate the expression of pro-osteoclastogenic or antiosteoclastogenic genes, respectively, leading to the inhibition of osteoclast differentiation. Moreover, the inhibitory effect of Nodal on osteoclast differentiation contributed to the reduction of RANKL-induced bone loss in vivo.


Asunto(s)
Diferenciación Celular , Proteína Nodal , Osteoclastos , Factor de Transcripción STAT1 , Animales , Ratones , Resorción Ósea/metabolismo , Resorción Ósea/genética , Resorción Ósea/patología , Factores Reguladores del Interferón/metabolismo , Factores Reguladores del Interferón/genética , Factores de Transcripción NFATC/metabolismo , Factores de Transcripción NFATC/genética , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogénesis/genética , Fosforilación , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Ligando RANK/metabolismo , Transducción de Señal , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética , Masculino , Ratones Endogámicos ICR , Proteína Nodal/genética , Proteína Nodal/metabolismo , Proteína Nodal/farmacología
5.
Biomed Mater ; 19(4)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38688311

RESUMEN

This study investigated the effectiveness of bone regeneration upon the application of leptin and osteolectin to a three-dimensional (3D) printed poly(ϵ-caprolactone) (PCL) scaffold. A fused deposition modeling 3D bioprinter was used to fabricate scaffolds with a diameter of 4.5 mm, a height of 0.5 mm, and a pore size of 420-520 nm using PCL (molecular weight: 43 000). After amination of the scaffold surface for leptin and osteolectin adhesion, the experimental groups were divided into the PCL scaffold (control), the aminated PCL (PCL/Amine) scaffold, the leptin-coated PCL (PCL/Leptin) scaffold, and the osteolectin-coated PCL (PCL/Osteo) scaffold. Next, the water-soluble tetrazolium salt-1 (WST-1) assay was used to assess cell viability. All groups exhibited cell viability rates of >100%. Female 7-week-old Sprague-Dawley rats were used forin vivoexperiments. Calvarial defects were introduced on the rats' skulls using a 5.5 mm trephine bur. The rats were divided into the PCL (control), PCL/Leptin, and PCL/Osteo scaffold groups. The scaffolds were then inserted into the calvarial defect areas, and the rats were sacrificed after 8-weeks to analyze the defect area. Micro-CT analysis indicated that the leptin- and osteolectin-coated scaffolds exhibited significantly higher bone regeneration. Histological analysis revealed new bone and blood vessels in the calvarial defect area. These findings indicate that the 3D-printed PCL scaffold allows for patient-customized fabrication as well as the easy application of proteins like leptin and osteolectin. Moreover, leptin and osteolectin did not show cytotoxicity and exhibited higher bone regeneration potential than the existing scaffold.


Asunto(s)
Regeneración Ósea , Leptina , Poliésteres , Andamios del Tejido , Animales , Femenino , Humanos , Ratas , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Regeneración Ósea/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Leptina/metabolismo , Ensayo de Materiales , Osteogénesis/efectos de los fármacos , Poliésteres/química , Impresión Tridimensional , Ratas Sprague-Dawley , Cráneo/efectos de los fármacos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
6.
Toxicol Res ; 40(2): 237-246, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38525128

RESUMEN

Baicalein is a flavonoid extracted from the roots of Scutellaria baicalensis and Scutellaria lateriflora. This compound exerts various biochemical activities, including antioxidant and anti-inflammatory effects. The study aimed to investigate the effect of baicalein on articular cartilage cells and elucidate its underlying mechanism. In primary rat chondrocyte cultures, treatment with baicalein demonstrated a reduction in the loss of proteoglycan and extracellular matrix degradation induced by interleukin (IL)-1ß. Baicalein suppressed IL-1ß-induced catabolic responses, including the expression and activation of matrix metalloproteinase (MMP)-13, MMP-3, and MMP-1. In addition, baicalein effectively reduced nitric oxide and prostaglandin E2 production, and it downregulated the expression of inducible nitric oxide synthase and cyclooxygenase-2 in primary rat chondrocytes. Furthermore, baicalein downregulated IL-1ß-induced inflammatory chemokines and cytokines, such as GM-CSF and MCP-1. These findings suggest that baicalein could potentially mitigate the catabolic responses of IL-1ß in chondrocytes, making it a promising candidate for both the prevention and treatment of osteoarthritis. Supplementary Information: The online version contains supplementary material available at 10.1007/s43188-024-00225-4.

7.
Int Endod J ; 57(6): 759-768, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38436525

RESUMEN

AIM: Among numerous constituents of Panax ginseng, a constituent named Ginsenoside Rb1 (G-Rb1) has been studied to diminish inflammation associated with diseases. This study investigated the anti-inflammatory properties of G-Rb1 on human dental pulp cells (hDPCs) exposed to lipopolysaccharide (LPS) and aimed to determine the underlying molecular mechanisms. METHODOLOGY: The KEGG pathway analysis was performed after RNA sequencing in G-Rb1- and LPS-treated hDPCs. Reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis were used for the assessment of cell adhesion molecules and inflammatory cytokines. Statistical analysis was performed with one-way ANOVA and the Student-Newman-Keuls test. RESULTS: G-Rb1 did not exhibit any cytotoxicity within the range of concentrations tested. However, it affected the levels of TNF-α, IL-6 and IL-8, as these showed reduced levels with exposure to LPS. Additionally, less mRNA and protein expressions of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) were shown. With the presence of G-Rb1, decreased levels of PI3K/Akt, phosphorylated IκBα and p65 were also observed. Furthermore, phosphorylated ERK and JNK by LPS were diminished within 15, 30 and 60 min of G-Rb1 exposure; however, the expression of non-phosphorylated ERK and JNK remained unchanged. CONCLUSIONS: G-Rb1 suppressed the LPS-induced increase of cell adhesion molecules and inflammatory cytokines, while also inhibiting PI3K/Akt, phosphorylation of NF-κB transcription factors, ERK and JNK of MAPK signalling in hDPCs.


Asunto(s)
Pulpa Dental , Ginsenósidos , Lipopolisacáridos , FN-kappa B , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Ginsenósidos/farmacología , Humanos , Pulpa Dental/efectos de los fármacos , Pulpa Dental/citología , Pulpa Dental/metabolismo , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , FN-kappa B/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Inflamación/metabolismo , Células Cultivadas , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Citocinas/metabolismo , Western Blotting
8.
J Cell Physiol ; 239(2): e31171, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38214098

RESUMEN

Human monocyte chemoattractant protein-1 (MCP-1) in mice has two orthologs, MCP-1 and MCP-5. MCP-1, which is highly expressed in osteoclasts rather than in osteoclast precursor cells, is an important factor in osteoclast differentiation. However, the roles of MCP-5 in osteoclasts are completely unknown. In this study, contrary to MCP-1, MCP-5 was downregulated during receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclast differentiation and was considered an inhibitory factor in osteoclast differentiation. The inhibitory role of MCP-5 in osteoclast differentiation was closely related to the increase in Ccr5 expression and the inhibition of IκB degradation by RANKL. Transgenic mice expressing MCP-5 controlled by Mx-1 promoter exhibited an increased bone mass because of a decrease in osteoclasts. This result strongly supported that MCP-5 negatively regulated osteoclast differentiation. MCP-5 also prevented severe bone loss caused by RANKL.


Asunto(s)
Diferenciación Celular , Glicoproteínas de Membrana , Proteínas Quimioatrayentes de Monocitos , Osteoclastos , Animales , Humanos , Masculino , Ratones , Células Cultivadas , Glicoproteínas de Membrana/metabolismo , Ratones Endogámicos ICR , Proteínas Quimioatrayentes de Monocitos/genética , Proteínas Quimioatrayentes de Monocitos/metabolismo , Proteínas Quimioatrayentes de Monocitos/farmacología , FN-kappa B/metabolismo , Osteoclastos/citología , Osteoclastos/metabolismo , Ligando RANK/farmacología , Ligando RANK/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Regulación hacia Arriba
9.
Free Radic Biol Med ; 211: 77-88, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101586

RESUMEN

Sestrins are stress-responsive proteins with antioxidant properties. They participate in cellular redox balance and protect against oxidative damage. This study investigated the effects of Sestrin2 (Sesn2) on osteoclast differentiation and function. Overexpressing Sesn2 in osteoclast precursor cells significantly inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclastogenesis. This was assessed as reduced expression of various osteoclast markers, including c-Fos, nuclear factor of activated T cells 1 (NFATc1), osteoclast-associated receptor, tartrate-resistant acid phosphatase, and cathepsin K. Conversely, downregulation of Sesn2 produced the opposite effect. Mechanistically, Sesn2 overexpression enhanced AMPK activation and the nuclear translocation of nuclear factor erythroid-derived factor 2-related factor 2 (Nrf2), promoting antioxidant enzymes. Moreover, azithromycin (Azm) induced Sesn2 expression, which suppressed RANKL-induced osteoclast differentiation. Specifically, Azm treatment reduced RANKL-induced production of reactive oxygen species in osteoclasts. Furthermore, intraperitoneal administration of Azm ameliorated RANKL-induced bone loss by reducing osteoclast activity in mice. Taken together, our results suggested that Azm-induced Sesn2 act as a negative regulator of RANKL-induced osteoclast differentiation through the AMPK/NFATc1 signaling pathway. Concisely, targeting Sesn2 can be a potential pharmacological intervention in osteoporosis.


Asunto(s)
Osteogénesis , Ligando RANK , Animales , Ratones , Osteogénesis/genética , Especies Reactivas de Oxígeno/metabolismo , Ligando RANK/genética , Ligando RANK/farmacología , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Antioxidantes/farmacología , Osteoclastos/metabolismo , FN-kappa B/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Diferenciación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA