Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7006, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938579

RESUMEN

Quantum oscillation phenomenon is an essential tool to understand the electronic structure of quantum matter. Here we report a systematic study of quantum oscillations in the electronic specific heat Cel in natural graphite. We show that the crossing of a single spin Landau level and the Fermi energy give rise to a double-peak structure, in striking contrast to the single peak expected from Lifshitz-Kosevich theory. Intriguingly, the double-peak structure is predicted by the kernel term for Cel/T in the free electron theory. The Cel/T represents a spectroscopic tuning fork of width 4.8kBT which can be tuned at will to resonance. Using a coincidence method, the double-peak structure can be used to accurately determine the Landé g-factors of quantum materials. More generally, the tuning fork can be used to reveal any peak in fermionic density of states tuned by magnetic field, such as Lifshitz transition in heavy-fermion compounds.

2.
Proc Natl Acad Sci U S A ; 120(33): e2302756120, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549272

RESUMEN

The mutual coupling of spin and lattice degrees of freedom is ubiquitous in magnetic materials and potentially creates exotic magnetic states in response to the external magnetic field. Particularly, geometrically frustrated magnets serve as a fertile playground for realizing magnetic superstructure phases. Here, we observe an unconventional two-step magnetostructural transition prior to a half-magnetization plateau in a breathing pyrochlore chromium spinel by means of state-of-the-art magnetization and magnetostriction measurements in ultrahigh magnetic fields available up to 600 T. Considering a microscopic magnetoelastic theory, the intermediate-field phase can be assigned to a magnetic superstructure with a three-dimensional periodic array of 3-up-1-down and canted 2-up-2-down spin molecules. We attribute the emergence of the magnetic superstructure to a unique combination of the strong spin-lattice coupling and large breathing anisotropy.

3.
Nat Commun ; 14(1): 4064, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452014

RESUMEN

The currently established electronic phase diagram of cuprates is based on a study of single- and double-layered compounds. These CuO2 planes, however, are directly contacted with dopant layers, thus inevitably disordered with an inhomogeneous electronic state. Here, we solve this issue by investigating a 6-layered Ba2Ca5Cu6O12(F,O)2 with inner CuO2 layers, which are clean with the extremely low disorder, by angle-resolved photoemission spectroscopy (ARPES) and quantum oscillation measurements. We find a tiny Fermi pocket with a doping level less than 1% to exhibit well-defined quasiparticle peaks which surprisingly lack the polaronic feature. This provides the first evidence that the slightest amount of carriers is enough to turn a Mott insulating state into a metallic state with long-lived quasiparticles. By tuning hole carriers, we also find an unexpected phase transition from the superconducting to metallic states at 4%. Our results are distinct from the nodal liquid state with polaronic features proposed as an anomaly of the heavily underdoped cuprates.


Asunto(s)
Cobre , Superconductividad , Electrónica , Transición de Fase
4.
Rev Sci Instrum ; 94(7)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37409909

RESUMEN

To generate long-duration pulsed magnetic fields with low energy consumption, we present a practical setup that implements an electromagnet made of high-purity copper (99.9999%). The resistance of the high-purity copper coil decreases from 171 mΩ (300 K) to 19.3 mΩ (77.3 K) and to below ∼0.15 mΩ (4.2 K), indicating a high residual resistance ratio of 1140 and a substantial reduction in Joule loss at low temperature. Using a 157.5 F electric-double-layer-capacitor bank with a charged voltage of 100 V, a pulsed magnetic field of 19.8 T with a total field duration of more than 1 s is generated. The field strength of the liquid helium-cooled high-purity copper coil is approximately double that of a liquid nitrogen-cooled one. The low resistance of the coil and the resultant low Joule heating effect explain the improvements in accessible field strength. The low electric energy used for field generation warrants further investigation on low-impedance pulsed magnets consisting of high-purity metals.


Asunto(s)
Cobre , Helio , Campos Magnéticos , Metales , Imanes
5.
Rev Sci Instrum ; 94(5)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37125859

RESUMEN

We report an experimental setup for simultaneously measuring specific heat and thermal conductivity in feedback-controlled pulsed magnetic fields of 50 ms duration at cryogenic temperatures. A stabilized magnetic field pulse obtained by the feedback control, which dramatically improves the thermal stability of the setup and sample, is used in combination with the flash method to obtain absolute values of thermal properties up to 37.2 T in the 22-16 K temperature range. We describe the experimental setup and demonstrate the performance of the present method with measurements on single-crystal samples of the geometrically frustrated quantum spin-dimer system SrCu2(BO3)2. Our proof-of-principle results show excellent agreement with data taken using a standard steady-state method, confirming the validity and convenience of the present approach.

6.
Nat Commun ; 14(1): 2130, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37080975

RESUMEN

Exploring new topological phenomena and functionalities induced by strong electron correlation has been a central issue in modern condensed-matter physics. One example is a topological insulator (TI) state and its functionality driven by the Coulomb repulsion rather than a spin-orbit coupling. Here, we report a 'correlation-driven' TI state realized in an organic zero-gap system α-(BETS)2I3. The topological surface state and chiral anomaly are observed in temperature and field dependences of resistance, indicating a three-dimensional TI state at low temperatures. Moreover, we observe a topological phase switching between the TI state and non-equilibrium Dirac semimetal state by a dc current, which is a unique functionality of a correlation-driven TI state. Our findings demonstrate that correlation-driven TIs are promising candidates not only for practical electronic devices but also as a field for discovering new topological phenomena and phases.

7.
Nat Commun ; 13(1): 7188, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36418308

RESUMEN

Anomalous transport responses, dictated by the nontrivial band topology, are the key for application of topological materials to advanced electronics and spintronics. One promising platform is topological nodal-line semimetals due to their rich topology and exotic physical properties. However, their transport signatures have often been masked by the complexity in band crossings or the coexisting topologically trivial states. Here we show that, in slightly hole-doped SrAs3, the single-loop nodal-line states are well-isolated from the trivial states and entirely determine the transport responses. The characteristic torus-shaped Fermi surface and the associated encircling Berry flux of nodal-line fermions are clearly manifested by quantum oscillations of the magnetotransport properties and the quantum interference effect resulting in the two-dimensional behaviors of weak antilocalization. These unique quantum transport signatures make the isolated nodal-line fermions in SrAs3 desirable for novel devices based on their topological charge and spin transport.

8.
Nat Commun ; 13(1): 5590, 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36192393

RESUMEN

Exotic superconductivity is formed by unconventional electron pairing and exhibits various unique properties that cannot be explained by the basic theory. The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state is known as an exotic superconducting state in that the electron pairs have a finite center-of-mass momentum leading to a spatially modulated pattern of superconductivity. The spatial modulation endows the FFLO state with emergent anisotropy. However, the anisotropy has never been experimentally verified despite numerous efforts over the years. Here, we report detection of anisotropic acoustic responses depending on the sound propagation direction appearing above the Pauli limit. This anisotropy reveals that the two-dimensional FFLO state has a center-of-mass momentum parallel to the nesting vector on the Fermi surface. The present findings will facilitate our understanding of not only superconductivity in solids but also exotic pairings of various particles.

9.
Rev Sci Instrum ; 92(4): 043901, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34243466

RESUMEN

We have developed a new calorimeter for measuring the thermodynamic properties in pulsed magnetic fields. Instrumental design is described along with the instrument construction details, including the sensitivity of a RuO2 thermometer. Operation of the calorimeter is demonstrated by measuring the heat capacity of three samples: pure germanium, CeCu2Ge2, and κ-(BEDT-TTF)2Cu[N(CN)2]Br, in pulsed fields up to 43.5 T. Obtaining field stability is key in measuring high-resolution heat capacity under pulsed fields. We also examine the performance of the calorimeter by employing two measurement techniques: the quasi-adiabatic and dual-slope techniques. We demonstrate that the calorimeter developed in this study is capable of performing high-resolution calorimetry in pulsed magnetic fields, which opens the door to new opportunities for high-field thermodynamic studies.

10.
Rev Sci Instrum ; 92(2): 024711, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33648141

RESUMEN

A pulsed power supply with a compact and low-cost electric-double-layer-capacitor (EDLC) is developed for generating pulsed magnetic fields with a long pulse duration of a few seconds. The system is demonstrated in three experimental setups using a 10.7 F- or 50 F-EDLC capacitor bank. By using the 10.7 F-EDLC capacitor bank with a 27 mm wide-bore magnet, the pulsed magnetic field with a peak field strength of 24.3 T and a pulse duration of ∼1 s is generated. The field profiles are reproduced in the theoretical calculations taking Joule heating into account. The calculations are also used to discuss possible variations of the field profile for future investigations.

11.
Phys Rev Lett ; 126(10): 106801, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33784120

RESUMEN

In the immediate vicinity of the critical temperature (T_{c}) of a phase transition, there are fluctuations of the order parameter that reside beyond the mean-field approximation. Such critical fluctuations usually occur in a very narrow temperature window in contrast to Gaussian fluctuations. Here, we report on a study of specific heat in graphite subject to a high magnetic field when all carriers are confined in the lowest Landau levels. The observation of a BCS-like specific heat jump in both temperature and field sweeps establishes that the phase transition discovered decades ago in graphite is of the second order. The jump is preceded by a steady field-induced enhancement of the electronic specific heat. A modest (20%) reduction in the amplitude of the magnetic field (from 33 to 27 T) leads to a threefold decrease of T_{c} and a drastic widening of the specific heat anomaly, which acquires a tail spreading to two times T_{c}. We argue that the steady departure from the mean-field BCS behavior is the consequence of an exceptionally large Ginzburg number in this dilute metal, which grows steadily as the field lowers. Our fit of the critical fluctuations indicates that they belong to the 3DXY universality class as in the case of the ^{4}He superfluid transition.

12.
Science ; 369(6505): 833-838, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32792396

RESUMEN

In cuprate superconductors with high critical transition temperature (T c), light hole-doping to the parent compound, which is an antiferromagnetic Mott insulator, has been predicted to lead to the formation of small Fermi pockets. These pockets, however, have not been observed. Here, we investigate the electronic structure of the five-layered Ba2Ca4Cu5O10(F,O)2, which has inner copper oxide (CuO2) planes with extremely low disorder, and find small Fermi pockets centered at (π/2, π/2) of the Brillouin zone by angle-resolved photoemission spectroscopy and quantum oscillation measurements. The d-wave superconducting gap opens along the pocket, revealing the coexistence between superconductivity and antiferromagnetic ordering in the same CuO2 sheet. These data further indicate that superconductivity can occur without contribution from the antinodal region around (π, 0), which is shared by other competing excitations.

13.
Sci Adv ; 6(29): eabb1539, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32832638

RESUMEN

The recent observation of the anomalous Hall effect (AHE) without notable magnetization in antiferromagnets has suggested that ferromagnetic ordering is not a necessary condition. Thus, recent theoretical studies have proposed that higher-rank magnetic multipoles formed by clusters of spins (cluster multipoles) can generate the AHE without magnetization. Despite such an intriguing proposal, controlling the unconventional AHE by inducing these cluster multipoles has not been investigated. Here, we demonstrate that strain can manipulate the hidden Berry curvature effect by inducing the higher-rank cluster multipoles in spin-orbit-coupled antiferromagnets. Observing the large AHE on fully strained antiferromagnetic Nd2Ir2O7 thin films, we prove that strain-induced cluster T 1-octupoles are the only source of observed AHE. Our results provide a previously unidentified pathway for generating the unconventional AHE via strain-induced magnetic structures and establish a platform for exploring undiscovered topological phenomena via strain in correlated materials.

14.
Rev Sci Instrum ; 91(3): 033901, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32260011

RESUMEN

A simple method for measuring electrical resistivity under destructive pulsed magnetic fields is presented. This method uses pick-up voltage as the power source to allow the measurement of the absolute value of resistivity in ultra-high magnetic fields above 100 T. The experimental setup and its operation are described in detail, and its performance is demonstrated using critical field measurements of thin-film FeSe0.5Te0.5 samples. Possible scientific applications of this setup in high magnetic fields as well as in any other environment with a high field sweep rate are also discussed.

15.
Nano Lett ; 19(12): 8806-8810, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31714089

RESUMEN

The discoveries of intrinsic ferromagnetism in atomically thin van der Waals crystals have opened a new research field enabling fundamental studies on magnetism at two-dimensional (2D) limit as well as development of magnetic van der Waals heterostructures. Currently, a variety of 2D ferromagnetism has been explored mainly by mechanically exfoliating "originally ferromagnetic (FM)" van der Waals crystals, while a bottom-up approach by thin-film growth technique has demonstrated emergent 2D ferromagnetism in a variety of "originally non-FM" van der Waals materials. Here we demonstrate that V5Se8 epitaxial thin films grown by molecular-beam epitaxy exhibit emergent 2D ferromagnetism with intrinsic spin polarization of the V 3d electrons despite that the bulk counterpart is "originally antiferromagnetic". Moreover, thickness-dependence measurements reveal that this newly developed 2D ferromagnet could be classified as an itinerant 2D Heisenberg ferromagnet with weak magnetic anisotropy, broadening a lineup of 2D magnets to those potentially beneficial for future spintronics applications.

16.
Proc Natl Acad Sci U S A ; 116(22): 10686-10690, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31072923

RESUMEN

Water freezes into ice in winter and evaporates into vapor in summer. Scientifically, the transformations between solid, liquid, and gas are called phase transitions and can be classified through the changes in symmetry which occur in each case. A fourth phase of matter was discovered late in the 19th century: the liquid crystal nematic, in which rod- or disk-shaped molecules align like the atoms in a solid, while continuing to flow like a liquid. Here we report thermodynamic evidence of a quantum analog of the classical nematic phase, the quantum spin nematic (SN). In an SN, the spins of a quantum magnet select a common axis, like a nematic liquid crystal, while escaping conventional magnetic order. Our state-of-the-art thermal measurements in high pulsed magnetic fields up to 33 T on the copper mineral volborthite with spin 1/2 on a frustrated lattice provide thermodynamic evidence for SN order, half a century after the theoretical proposal [Blume M, Hsieh YY (1969) J Appl Phys 40:1249; Andreev AF, Grishchuk IA (1984) J Exp Theor Phys 97:467-475].

17.
Proc Natl Acad Sci U S A ; 116(18): 8803-8808, 2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-30988202

RESUMEN

Pyrochlore iridates have provided a plethora of novel phenomena owing to the combination of topology and correlation. Among them, much attention has been paid to [Formula: see text], as it is known as a Luttinger semimetal characterized by quadratic band touching at the Brillouin zone center, suggesting that the topology of its electronic states can be tuned by a moderate lattice strain and external magnetic field. Here, we report that our epitaxial [Formula: see text] thin films grown by solid-state epitaxy exhibit a spontaneous Hall effect that persists up to 50 K without having spontaneous magnetization within our experimental accuracy. This indicates that the system breaks the time reversal symmetry at a temperature scale that is too high for the magnetism to be due to Pr 4f moments and must be related to magnetic order of the iridium 5d electrons. Moreover, our analysis finds that the chiral anomaly induces the negative contribution to the magnetoresistance only when a magnetic field and the electric current are parallel to each other. Our results indicate that the strained part of the thin film forms a magnetic Weyl semimetal state.

18.
Phys Rev Lett ; 120(25): 257206, 2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29979063

RESUMEN

The specific heat of the Kondo insulator YbB_{12} has been measured up to 60 T. The Sommerfeld coefficient γ significantly increases at around 50 T, where the insulator metal transition occurs with a steep increase of the magnetization. γ reaches 67 mJ/(mol K^{2}) at high fields, which directly indicates that the quasiparticles gain a heavy thermodynamic effective mass and transform into a Kondo metal under magnetic fields. The field-induced Kondo metal has a rather high Kondo temperature around 200 K. The strong Kondo coupling proves that the energy gap collapse does not correspond to the breakdown of the Kondo bound state. The steep increase of the magnetization at the transition manifests the sharp density of states at the Fermi energy formed via the Kondo resonance.

19.
Inorg Chem ; 55(7): 3515-29, 2016 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-27002487

RESUMEN

The crystal structures of NiX2(pyz)2 (X = Cl (1), Br (2), I (3), and NCS (4)) were determined by synchrotron X-ray powder diffraction. All four compounds consist of two-dimensional (2D) square arrays self-assembled from octahedral NiN4X2 units that are bridged by pyz ligands. The 2D layered motifs displayed by 1-4 are relevant to bifluoride-bridged [Ni(HF2)(pyz)2]EF6 (E = P, Sb), which also possess the same 2D layers. In contrast, terminal X ligands occupy axial positions in 1-4 and cause a staggered packing of adjacent layers. Long-range antiferromagnetic (AFM) order occurs below 1.5 (Cl), 1.9 (Br and NCS), and 2.5 K (I) as determined by heat capacity and muon-spin relaxation. The single-ion anisotropy and g factor of 2, 3, and 4 were measured by electron-spin resonance with no evidence for zero-field splitting (ZFS) being observed. The magnetism of 1-4 spans the spectrum from quasi-two-dimensional (2D) to three-dimensional (3D) antiferromagnetism. Nearly identical results and thermodynamic features were obtained for 2 and 4 as shown by pulsed-field magnetization, magnetic susceptibility, as well as their Néel temperatures. Magnetization curves for 2 and 4 calculated by quantum Monte Carlo simulation also show excellent agreement with the pulsed-field data. Compound 3 is characterized as a 3D AFM with the interlayer interaction (J⊥) being slightly stronger than the intralayer interaction along Ni-pyz-Ni segments (J(pyz)) within the two-dimensional [Ni(pyz)2](2+) square planes. Regardless of X, J(pyz) is similar for the four compounds and is roughly 1 K.

20.
Rev Sci Instrum ; 86(10): 104701, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26520972

RESUMEN

We describe the construction of a simple, compact, and cost-effective feedback system that produces flat-top field profiles in pulsed magnetic fields. This system is designed for use in conjunction with a typical capacitor-bank driven pulsed magnet and was tested using a 60-T pulsed magnet. With the developed feedback controller, we have demonstrated flat-top magnetic fields as high as 60.64 T with an excellent field stability of ±0.005 T. The result indicates that the flat-top pulsed magnetic field produced features high field stability and an accessible field strength. These features make this system useful for improving the resolution of data with signal averaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...