Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vet Res ; 54(1): 82, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37759311

RESUMEN

Immune checkpoint molecules PD-1/PD-L1 cause T-cell exhaustion and contribute to disease progression in chronic infections of cattle. We established monoclonal antibodies (mAbs) that specifically inhibit the binding of bovine PD-1/PD-L1; however, conventional anti-PD-1 mAbs are not suitable as therapeutic agents because of their low binding affinity to antigen. In addition, their sensitivity for the detection of bovine PD-1 is low and their use for immunostaining PD-1 is limited. To address these issues, we established two anti-bovine PD-1 rabbit mAbs (1F10F1 and 4F5F2) and its chimeric form using bovine IgG1 (Boch1D10F1), which exhibit high binding affinity. One of the rabbit mAb 1D10F1 binds more strongly to bovine PD-1 compared with a conventional anti-PD-1 mAb (5D2) and exhibits marked inhibitory activity on the PD-1/PD-L1 interaction. In addition, PD-1 expression in bovine T cells could be detected with higher sensitivity by flow cytometry using 1D10F1. Furthermore, we established higher-producing cells of Boch1D10F1 and succeeded in the mass production of Boch1D10F1. Boch1D10F1 exhibited a similar binding affinity to bovine PD-1 and the inhibitory activity on PD-1/PD-L1 binding compared with 1D10F1. The immune activation by Boch1D10F1 was also confirmed by the enhancement of IFN-γ production. Finally, Boch1D10F1 was administered to bovine leukemia virus-infected cows to determine its antiviral effect. In conclusion, the high-affinity anti-PD-1 antibody developed in this study represents a powerful tool for detecting and inhibiting bovine PD-1 and is a candidate for PD-1-targeted immunotherapy in cattle.


Asunto(s)
Antígeno B7-H1 , Interferón gamma , Femenino , Bovinos , Conejos , Animales , Receptor de Muerte Celular Programada 1/metabolismo , Antivirales , Anticuerpos Monoclonales
2.
Arch Virol ; 168(3): 98, 2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36871085

RESUMEN

Bovine leukemia virus (BLV) is a member of the genus Deltaretrovirus within the family Retroviridae that infects bovine B cells, causing persistent lymphocytosis and enzootic bovine leukosis (EBL) in a small fraction of infected cattle. As changes in the transcriptome of infected cells are important for BLV disease progression, comprehensive analysis of gene expression in different disease states is required. In this study, we performed an RNA-seq analysis using samples from non-EBL cattle with and without BLV infection. Subsequently, a transcriptome analysis was conducted in combination with previously obtained RNA-seq data from EBL cattle. We found several differentially expressed genes (DEGs) between the three groups. After screening and confirmation of target DEGs using real-time reverse transcription polymerase chain reaction, we found that 12 target genes were significantly upregulated in EBL cattle compared to BLV-infected cattle without lymphoma. In addition, the expression levels of B4GALT6, ZBTB32, EPB4L1, RUNX1T1, HLTF, MKI67, and TOP2A were significantly and positively correlated with the proviral load in BLV-infected cattle. Overexpression experiments revealed that these changes were independent of BLV tax or BLV AS1-S expression in vitro. Our study provides additional information on host gene expression during BLV infection and EBL development, which may be helpful for understanding the complexity of transcriptome profiles during disease progression.


Asunto(s)
Leucosis Bovina Enzoótica , Virus de la Leucemia Bovina , Animales , Bovinos , Regulación hacia Arriba , Activación Transcripcional , Progresión de la Enfermedad
3.
Pathogens ; 12(1)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36678478

RESUMEN

Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis. However, the propagation and distribution of BLV after primary infection still need to be fully elucidated. Here, we experimentally infected seven cattle with BLV and analyzed the BLV proviral load (PVL) in the blood and various organs. BLV was first detected in the blood of the cattle after one week, and the blood PVL increased for three weeks after infection. The PVL was maintained at a high level in five cattle, while it decreased to a low or medium level in two cattle. BLV was distributed in various organs, such as the heart, lung, liver, kidney, abomasum, and thymus, and, notably, in the spleen and lymph nodes. In cattle with a high blood PVL, BLV was detected in organs other than the spleen and lymph nodes, whereas in those with a low blood PVL, BLV was only detected in the spleen and lymph nodes. The amount of BLV in the organs was comparable to that in the blood. Our findings point to the possibility of estimating the distribution of BLV provirus in organs, lymph nodes, and body fluids by measuring the blood PVL, as it was positively correlated with the biodistribution of BLV provirus in the body of BLV infection during early stages.

4.
Front Vet Sci ; 9: 1038101, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36504869

RESUMEN

Introduction: Bovine leukemia virus (BLV) belongs to the family Retroviridae and is a causative agent for enzootic bovine leucosis, the most common neoplastic disease affecting cattle worldwide. BLV proviral load (PVL) is associated with disease progression and transmission risk but requires blood collection and quantitative PCR testing. Anti-BLV antibodies in whey have been used as a diagnostic tool for BLV infection; however, quantitative utilization has not been fully investigated. Furthermore, bovine leukocyte antigen (BoLA)-DRB3 is a polymorphic gene associated with BLV infectivity and PVL, but its effect on anti-BLV antibody levels in whey from BLV infected dams is unknown. Therefore, we aimed to investigate whether it is possible to correctly predict PVL in the blood and milk based on the amount of anti-BLV antibodies in milk, and whether the BoLA-DRB3 alleles associate with the amount of anti-BLV antibodies in milk. Methods: We examined whey from 442 dams from 11 different dairy farms located in 6 prefectures in Japan, including susceptible dams carrying at least one BoLA-DRB3* 012:01 or * 015:01 allele related with high PVL, resistant dams carrying at least one BoLA-DRB3 * 002:01, * 009:02, or * 014:01:01 allele related with low PVL, and neutral dams carrying other alleles. Results: First, our results provided compelling evidence that anti-BLV antibody levels in whey were positively correlated with the anti-BLV antibody levels in serum and with BLV PVL in blood and milk, indicating the possibility of estimating BLV PVL in blood and milk by measuring anti-BLV antibody levels in whey. Thus, our results showed that antibody titers in milk might be effective for estimating BLV transmission risk and disease progression in the field. Second, we demonstrated that anti-BLV antibody levels in whey from BLV resistant dams were significantly lower than those from susceptible and neutral dams. Discussion: This is the first report suggesting that the BoLA-DRB3 polymorphism affects anti-BLV antibody levels in whey from BLV-infected dams. Taken together, our results suggested that anti-BLV antibody levels in whey, measured by enzyme-linked immunosorbent assay, may be a useful marker to diagnose the risk of BLV infection and estimate PVL in blood and milk.

5.
PLoS One ; 17(3): e0263660, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35263339

RESUMEN

Immune suppression during pregnancy and parturition is considered a risk factor that is related to the progression of bovine chronic diseases, such as bovine leukosis, which is caused by bovine leukemia virus (BLV). Our previous studies have demonstrated that prostaglandin E2 (PGE2) suppresses BLV-specific Th1 responses and contributes to the disease progression during BLV infection. Although PGE2 reportedly plays important roles in the induction of parturition, PGE2 involvement in immune suppression during parturition is unknown. To investigate its involvement, we analyzed PGE2 kinetics and Th1 responses in BLV-infected pregnant cattle. PGE2 concentrations in sera were increased, whereas IFN-γ responses were decreased before delivery. PGE2 is known to suppress Th1 immune responses in cattle. Thus, these data suggest that PGE2 upregulation inhibits Th1 responses during parturition. We also found that estradiol was important for PGE2 induction in pregnant cattle. In vitro analyses indicated that estradiol suppressed IFN-γ production, at least in part, via PGE2/EP4 signaling. In vivo analyses showed that estradiol administration significantly influenced the induction of PGE2 production and impaired Th1 responses. Our data suggest that estradiol-induced PGE2 is involved in the suppression of Th1 responses during pregnancy and parturition in cattle, which could contribute to the progression of BLV infection.


Asunto(s)
Enfermedades de los Bovinos , Leucosis Bovina Enzoótica , Virus de la Leucemia Bovina , Animales , Bovinos , Dinoprostona , Estradiol , Femenino , Virus de la Leucemia Bovina/fisiología , Parto , Embarazo
6.
Prev Vet Med ; 198: 105528, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34773833

RESUMEN

Bovine leukemia virus (BLV) infection is endemic in Japanese dairy farms. To promote the participation of farmers in BLV infection control in Japan, it is important to provide estimates of the economic losses caused by this infection. We hypothesized that decreased immune function due to BLV infection would increase visceral abnormalities, in turn reducing carcass weight. We employed mediation analysis to estimate the annual economic loss due to carcass weight reduction caused by BLV infection. Culled Holstein cows from 12 commercial dairy farms in the Nemuro and Kushiro regions of Hokkaido, Japan, were traced. Information on age and the last delivery day were collected. A non-infected culled cow was defined as a cow from which BLV provirus was not detected. A high-proviral-load (H-PVL) cow was defined as a cow whose PVL titer was above 2465 copies/50 ng DNA or 56,765 copies/105 cells. A BLV-infected cow with PVL titer lower than the thresholds was categorized as low-proviral load (L-PVL). Post-mortem examination results for culled cows were collected from a meat inspection center. The hypothesis was tested by three models, using data from 222 culled dairy cows. Model 1, a generalized linear mixed-effects model, selected carcass weight as an outcome variable, BLV status and the potential confounders (lactation stage and age) as explanatory variables, and herd as a random effect. Model 2 additionally included the number of abnormal findings in the post-mortem examination (AFPE) as an explanatory variable. Model 3 applied a Bayesian generalized linear mixed model, which employed a mediator separately modeled for AFPE, to estimate the amount of direct, indirect, and total carcass weight loss with adjustment for known confounding factors. Compared to the mean carcass weight for the non-infected culled cows, the carcass weight for H-PVL culled cows was significantly decreased by 30.4 kg on average. For each increase of one in the number of AFPE, the mean carcass weight was decreased by 8.6 kg. Only the indirect effect of BLV H-PVL status on carcass weight loss through AFPE was significant, accounting for 21.6 % of the total effect on carcass weight reduction. In 2017, 73,650 culled dairy cows were slaughtered in Hokkaido, and the economic loss due to carcass weight loss caused by BLV infection that year was estimated to be US $1,391,649. In summary, unlike L-PVL cows, H-PVL status was associated with carcass weight reduction, which was partially mediated by an increase in the number of visceral abnormalities.


Asunto(s)
Enfermedades de los Bovinos , Industria Lechera/economía , Leucosis Bovina Enzoótica , Pérdida de Peso , Animales , Teorema de Bayes , Bovinos , Enfermedades de los Bovinos/economía , Enfermedades de los Bovinos/epidemiología , Leucosis Bovina Enzoótica/economía , Leucosis Bovina Enzoótica/epidemiología , Femenino , Japón/epidemiología , Virus de la Leucemia Bovina
7.
Vet Microbiol ; 254: 108976, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33453627

RESUMEN

Diarrhea is a major cause of death in calves and this is linked directly to economic loss in the cattle industry. Fermented milk replacer (FMR) has been used widely in clinical settings for calf feeding to improve its health and growth. However, the protective efficacy of FMR on calf diarrhea remains unclear. In this study, we verified the preventive effects of FMR feeding on calf diarrhea using an experimental infection model of bovine rotavirus (BRV) in newborn calves and a field study in dairy farms with calf diarrhea. In addition, we evaluated the protective efficacy of lactic acid bacteria-supplemented milk replacer (LAB-MR) in an experimental infection model. In the experimental infection, calves fed FMR or high-concentrated LAB-MR had diarrhea, but the water content of feces was lower and more stable than that of calves fed normal milk replacer. The amount of milk intake also decreased temporarily, but recovered immediately in the FMR- and LAB-MR-fed calves. As compared with the control calves, FMR- or LAB-MR-fed calves showed less severe or reduced histopathological lesions of enteritis in the intestinal mucosa. In a field study using dairy calves, FMR feeding significantly reduced the incidence of enteritis, mortality from enteritis, duration of a series of treatment for enteritis, number of consultations, and cost of medical care for the disease. These results suggest that feeding milk replacer-based probiotics to calves reduces the severity of diarrhea and tissue damage to the intestinal tract caused by BRV infection and provides significant clinical benefits to the prevention and treatment of calf diarrhea.


Asunto(s)
Alimentación Animal/análisis , Diarrea/prevención & control , Diarrea/veterinaria , Enteritis/veterinaria , Leche , Probióticos/administración & dosificación , Infecciones por Rotavirus/prevención & control , Infecciones por Rotavirus/veterinaria , Animales , Bovinos , Enfermedades de los Bovinos/prevención & control , Enfermedades de los Bovinos/virología , Productos Lácteos Cultivados , Diarrea/terapia , Suplementos Dietéticos , Enteritis/prevención & control , Femenino , Mucosa Intestinal/patología , Mucosa Intestinal/virología , Masculino , Embarazo , Probióticos/uso terapéutico , Infecciones por Rotavirus/terapia , Destete
8.
Front Vet Sci ; 7: 609443, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33344537

RESUMEN

Regulatory T cells (Tregs) regulate immune responses and maintain host immune homeostasis. Tregs contribute to the disease progression of several chronic infections by oversuppressing immune responses via the secretion of immunosuppressive cytokines, such as transforming growth factor (TGF)-ß and interleukin-10. In the present study, we examined the association of Tregs with Mycoplasma bovis infection, in which immunosuppression is frequently observed. Compared with uninfected cattle, the percentage of Tregs, CD4+CD25highFoxp3+ T cells, was increased in M. bovis-infected cattle. Additionally, the plasma of M. bovis-infected cattle contained the high concentrations of TGF-ß1, and M. bovis infection induced TGF-ß1 production from bovine immune cells in in vitro cultures. Finally, we analyzed the immunosuppressive effects of TGF-ß1 on bovine immune cells. Treatment with TGF-ß1 significantly decreased the expression of CD69, an activation marker, in T cells, and Th1 cytokine production in vitro. These results suggest that the increase in Tregs and TGF-ß1 secretion could be one of the immunosuppressive mechanisms and that lead to increased susceptibility to other infections in terms of exacerbation of disease during M. bovis infection.

9.
Front Vet Sci ; 7: 12, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32154274

RESUMEN

Bovine mycoplasmosis caused by Mycoplasma bovis results in pneumonia and mastitis in cattle. We previously demonstrated that the programmed death 1 (PD-1)/PD-ligand 1 (PD-L1) pathway is involved in immune dysfunction during M. bovis infection and that prostaglandin E2 (PGE2) suppressed immune responses and upregulated PD-L1 expression in Johne's disease, a bacterial infection in cattle. In this study, we investigated the role of PGE2 in immune dysfunction and the relationship between PGE2 and the PD-1/PD-L1 pathway in M. bovis infection. In vitro stimulation with M. bovis upregulated the expressions of PGE2 and PD-L1 presumably via Toll-like receptor 2 in bovine peripheral blood mononuclear cells (PBMCs). PGE2 levels of peripheral blood in infected cattle were significantly increased compared with those in uninfected cattle. Remarkably, plasma PGE2 levels were positively correlated with the proportions of PD-L1+ monocytes in M. bovis-infected cattle. Additionally, plasma PGE2 production in infected cattle was negatively correlated with M. bovis-specific interferon (IFN)-γ production from PBMCs. These results suggest that PGE2 could be one of the inducers of PD-L1 expression and could be involved in immunosuppression during M. bovis infection. In vitro blockade assays using anti-bovine PD-L1 antibody and a cyclooxygenase 2 inhibitor significantly upregulated the M. bovis-specific IFN-γ response. Our study findings might contribute to the development of novel therapeutic strategies for bovine mycoplasmosis that target PGE2 and the PD-1/PD-L1 pathway.

10.
Virol J ; 16(1): 157, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31842930

RESUMEN

BACKGROUND: Bovine leukemia virus (BLV), which is closely related to human T-cell leukemia virus, is the etiological agent of enzootic bovine leukosis, a disease characterized by a highly prolonged course involving persistent lymphocytosis and B-cell lymphoma. The bovine major histocompatibility complex class II region plays a key role in the subclinical progression of BLV infection. In this study, we aimed to evaluate the roles of CD4+ T-cell epitopes in disease progression in cattle. METHODS: We examined five Japanese Black cattle, including three disease-susceptible animals, one disease-resistant animal, and one normal animal, classified according to genotyping of bovine leukocyte antigen (BoLA)-DRB3 and BoLA-DQA1 alleles using polymerase chain reaction sequence-based typing methods. All cattle were inoculated with BLV-infected blood collected from BLV experimentally infected cattle and then subjected to CD4+ T-cell epitope mapping by cell proliferation assays. RESULTS: Five Japanese Black cattle were successfully infected with BLV, and CD4+ T-cell epitope mapping was then conducted. Disease-resistant and normal cattle showed low and moderate proviral loads and harbored six or five types of CD4+ T-cell epitopes, respectively. In contrast, the one of three disease-susceptible cattle with the highest proviral load did not harbor CD4+ T-cell epitopes, and two of three other cattle with high proviral loads each had only one epitope. Thus, the CD4+ T-cell epitope repertoire was less frequent in disease-susceptible cattle than in other cattle. CONCLUSION: Although only a few cattle were included in this study, our results showed that CD4+ T-cell epitopes may be associated with BoLA-DRB3-DQA1 haplotypes, which conferred differential susceptibilities to BLV proviral loads. These CD4+ T-cell epitopes could be useful for the design of anti-BLV vaccines targeting disease-susceptible Japanese Black cattle. Further studies of CD4+ T-cell epitopes in other breeds and using larger numbers of cattle with differential susceptibilities are required to confirm these findings.


Asunto(s)
Antígenos Virales/inmunología , Linfocitos T CD4-Positivos/inmunología , Leucosis Bovina Enzoótica/inmunología , Leucosis Bovina Enzoótica/virología , Mapeo Epitopo , Epítopos de Linfocito T/inmunología , Virus de la Leucemia Bovina/inmunología , Animales , Bovinos , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Antígenos HLA/genética , Haplotipos , Japón
11.
J Immunol ; 203(5): 1313-1324, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31366713

RESUMEN

Bovine leukemia virus (BLV) infection is a chronic viral infection of cattle and endemic in many countries, including Japan. Our previous study demonstrated that PGE2, a product of cyclooxygenase (COX) 2, suppresses Th1 responses in cattle and contributes to the progression of Johne disease, a chronic bacterial infection in cattle. However, little information is available on the association of PGE2 with chronic viral infection. Thus, we analyzed the changes in plasma PGE2 concentration during BLV infection and its effects on proviral load, viral gene transcription, Th1 responses, and disease progression. Both COX2 expression by PBMCs and plasma PGE2 concentration were higher in the infected cattle compared with uninfected cattle, and plasma PGE2 concentration was positively correlated with the proviral load. BLV Ag exposure also directly enhanced PGE2 production by PBMCs. Transcription of BLV genes was activated via PGE2 receptors EP2 and EP4, further suggesting that PGE2 contributes to disease progression. In contrast, inhibition of PGE2 production using a COX-2 inhibitor activated BLV-specific Th1 responses in vitro, as evidenced by enhanced T cell proliferation and Th1 cytokine production, and reduced BLV proviral load in vivo. Combined treatment with the COX-2 inhibitor meloxicam and anti-programmed death-ligand 1 Ab significantly reduced the BLV proviral load, suggesting a potential as a novel control method against BLV infection. Further studies using a larger number of animals are required to support the efficacy of this treatment for clinical application.


Asunto(s)
Anticuerpos/farmacología , Antígeno B7-H1/inmunología , Inhibidores de la Ciclooxigenasa 2/farmacología , Dinoprostona/farmacología , Leucosis Bovina Enzoótica/tratamiento farmacológico , Inmunidad/efectos de los fármacos , Virus de la Leucemia Bovina/efectos de los fármacos , Animales , Antivirales/farmacología , Bovinos , Ciclooxigenasa 2/metabolismo , Leucosis Bovina Enzoótica/inmunología , Leucosis Bovina Enzoótica/virología , Virus de la Leucemia Bovina/inmunología , Provirus/efectos de los fármacos , Provirus/inmunología , Carga Viral/efectos de los fármacos , Carga Viral/inmunología
12.
J Vet Med Sci ; 80(10): 1524-1527, 2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30122691

RESUMEN

Bovine leukemia virus (BLV) is horizontally transmitted among cattle through infected blood. This 3-year field study (2013-2016) aimed to confirm the potential of the blood-sucking stable fly as a risk factor of BLV transmission and to determine the efficacy of vector control on preventing the transmission of BLV. The BLV-positive conversion rate during summer was higher than that during winter in a model dairy farm, where many stable flies were observed during the summer. After fly nets were fixed onto the barn to prevent fly invasion, the BLV-positive conversion rate during the summer was significantly decreased compared with that in the absence of fly nets (P<0.01). These findings suggest that vector control using a fly net may inhibit BLV transmission.


Asunto(s)
Enfermedades de los Bovinos/prevención & control , Leucosis Bovina Enzoótica/prevención & control , Control de Insectos , Insectos Vectores , Virus de la Leucemia Bovina , Mosquiteros/veterinaria , Muscidae , Animales , Bovinos , Enfermedades de los Bovinos/transmisión , Industria Lechera , Leucosis Bovina Enzoótica/transmisión , Femenino , Control de Insectos/instrumentación , Control de Insectos/métodos , Factores de Riesgo
13.
Vet Res ; 49(1): 50, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29914540

RESUMEN

Bovine leukemia virus (BLV) is a retrovirus that infects B cells in cattle and causes bovine leukosis after a long latent period. Progressive exhaustion of T cell functions is considered to facilitate disease progression of BLV infection. Programmed death-1 (PD-1) and lymphocyte activation gene-3 (LAG-3) are immunoinhibitory receptors that contribute to T-cell exhaustion caused by BLV infection in cattle. However, it is unclear whether the cooperation of PD-1 and LAG-3 accelerates disease progression of BLV infection. In this study, multi-color flow cytometric analyses of PD-1- and LAG-3-expressing T cells were performed in BLV-infected cattle at different stages of the disease. The frequencies of PD-1+LAG-3+ heavily exhausted T cells among CD4+ and CD8+ T cells was higher in the blood of cattle with B-cell lymphoma over that of BLV-uninfected and BLV-infected cattle without lymphoma. In addition, blockade assays of peripheral blood mononuclear cells were performed to examine whether inhibition of the interactions between PD-1 and LAG-3 and their ligands by blocking antibodies could restore T-cell function during BLV infection. Single or dual blockade of the PD-1 and LAG-3 pathways reactivated the production of Th1 cytokines, interferon-γ and tumor necrosis factor-α, from BLV-specific T cells of the infected cattle. Taken together, these results indicate that PD-1 and LAG-3 cooperatively mediate the functional exhaustion of CD4+ and CD8+ T cells and are associated with the development of B-cell lymphoma in BLV-infected cattle.


Asunto(s)
Antígenos CD/genética , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Leucosis Bovina Enzoótica/inmunología , Receptor de Muerte Celular Programada 1/genética , Animales , Antígenos CD/metabolismo , Bovinos , Leucosis Bovina Enzoótica/virología , Virus de la Leucemia Bovina/fisiología , Leucocitos Mononucleares/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Proteína del Gen 3 de Activación de Linfocitos
14.
J Vet Med Sci ; 79(12): 2036-2039, 2017 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-29109356

RESUMEN

Enzootic bovine leukemia is caused by the bovine leukemia virus (BLV). BLV is transmitted vertically or horizontally through the transfer of infected cells via direct contact, through milk, insect bites and contaminated iatrogenic procedures. However, we lacked direct evidence of intrauterine infection. The purpose of this study was to confirm intrauterine BLV infection in two pregnant dams with high viral load by cesarean delivery. BLV was detected in cord and placental blood, and the BLV in the newborns showed 100% nucleotide identity with the BLV-env sequence from the dams. Notably, a newborn was seropositive for BLV but had no colostral antibodies. In this study, we presented a direct evidence of intrauterine BLV transmission in pregnant dam with a high proviral load. These results could aid the development of BLV control measures targeting viral load.


Asunto(s)
Leucosis Bovina Enzoótica/transmisión , Transmisión Vertical de Enfermedad Infecciosa/veterinaria , Virus de la Leucemia Bovina , Animales , Animales Recién Nacidos/virología , Bovinos , Leucosis Bovina Enzoótica/virología , Femenino , Embarazo , Útero/virología , Carga Viral
15.
Front Immunol ; 8: 650, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28638381

RESUMEN

Blockade of immunoinhibitory molecules, such as programmed death-1 (PD-1)/PD-ligand 1 (PD-L1), is a promising strategy for reinvigorating exhausted T cells and preventing disease progression in a variety of chronic infections. Application of this therapeutic strategy to cattle requires bovinized chimeric antibody targeting immunoinhibitory molecules. In this study, anti-bovine PD-1 rat-bovine chimeric monoclonal antibody 5D2 (Boch5D2) was constructed with mammalian expression systems, and its biochemical function and antiviral effect were characterized in vitro and in vivo using cattle infected with bovine leukemia virus (BLV). Purified Boch5D2 was capable of detecting bovine PD-1 molecules expressed on cell membranes in flow cytometric analysis. In particular, Biacore analysis determined that the binding affinity of Boch5D2 to bovine PD-1 protein was similar to that of the original anti-bovine PD-1 rat monoclonal antibody 5D2. Boch5D2 was also capable of blocking PD-1/PD-L1 binding at the same level as 5D2. The immunomodulatory and therapeutic effects of Boch5D2 were evaluated by in vivo administration of the antibody to a BLV-infected calf. Inoculated Boch5D2 was sustained in the serum for a longer period. Boch5D2 inoculation resulted in activation of the proliferation of BLV-specific CD4+ T cells and decrease in the proviral load of BLV in the peripheral blood. This study demonstrates that Boch5D2 retains an equivalent biochemical function to that of the original antibody 5D2 and is a candidate therapeutic agent for regulating antiviral immune response in vivo. Clinical efficacy of PD-1/PD-L1 blockade awaits further experimentation with a large number of animals.

16.
Immun Inflamm Dis ; 5(3): 355-363, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28544524

RESUMEN

INTRODUCTION: Bovine mycoplasma, chiefly Mycoplasma bovis, is a pathogen that causes pneumonia, mastitis, arthritis, and otitis media in cattle. This pathogen exerts immunosuppressive effects, such as the inhibition of interferon production. However, the mechanisms involved in bovine mycoplasmosis have not been fully elucidated. In this study, we investigated the role of the programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) pathway in immunosuppression in bovine mycoplasmosis. METHODS: In the initial experiments, we used enzyme-linked immunosorbent assay to measure interferon-γ (IFN-γ) from peripheral blood mononuclear cells (PBMCs) isolated from cattle with mycoplasmosis. RESULTS: Expectedly, IFN-γ production significantly decreased in cattle with mycoplasmosis compared with that in clinically healthy cattle. Concomitantly, flow cytometric analysis revealed that the proportions of PD-1+ CD4+ and PD-L1+ CD14+ cells significantly increased in peripheral blood of the infected cattle. Interestingly, the number of PD-1+ CD4+ and PD-1+ CD8+ T cells were negatively correlated with IFN-γ production from PBMCs in bovine mycoplasmosis. Additionally, blockade of the PD-1/PD-L1 pathway in vitro by anti-bovine PD-1- and anti-bovine PD-L1 antibodies significantly upregulated the production of IFN-γ from anti-mycoplasma-specific cells. CONCLUSIONS: These results suggest that the PD-1/PD-L1 pathway could be involved in immune exhaustion of bovine mycoplasma-specific T cells. In conclusion, our study opens up a new perspective in the therapeutic strategy for bovine mycoplasmosis by targeting the immunoinhibitory receptor pathways.


Asunto(s)
Antígeno B7-H1/inmunología , Enfermedades de los Bovinos/inmunología , Regulación de la Expresión Génica/inmunología , Interferón gamma/inmunología , Infecciones por Mycoplasma/inmunología , Mycoplasma bovis/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Linfocitos T/inmunología , Animales , Bovinos , Enfermedades de los Bovinos/patología , Infecciones por Mycoplasma/patología , Linfocitos T/patología
17.
PLoS One ; 12(4): e0174916, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28445479

RESUMEN

Programmed death-1 (PD-1), an immunoinhibitory receptor on T cells, is known to be involved in immune evasion through its binding to PD-ligand 1 (PD-L1) in many chronic diseases. We previously found that PD-L1 expression was upregulated in cattle infected with bovine leukemia virus (BLV) and that an antibody that blocked the PD-1/PD-L1 interaction reactivated T-cell function in vitro. Therefore, this study assessed its antivirus activities in vivo. First, we inoculated the anti-bovine PD-L1 rat monoclonal antibody 4G12 into a BLV-infected cow. However, this did not induce T-cell proliferation or reduction of BLV provirus loads during the test period, and only bound to circulating IgM+ B cells until one week post-inoculation. We hypothesized that this lack of in vivo effects was due to its lower stability in cattle and so established an anti-PD-L1 rat-bovine chimeric antibody (Boch4G12). Boch4G12 was able to bind specifically with bovine PD-L1, interrupt the PD-1/PD-L1 interaction, and activate the immune response in both healthy and BLV-infected cattle in vitro. Therefore, we experimentally infected a healthy calf with BLV and inoculated it intravenously with 1 mg/kg of Boch4G12 once it reached the aleukemic (AL) stage. Cultivation of peripheral blood mononuclear cells (PBMCs) isolated from the tested calf indicated that the proliferation of CD4+ T cells was increased by Boch4G12 inoculation, while BLV provirus loads were significantly reduced, clearly demonstrating that this treatment induced antivirus activities. Therefore, further studies using a large number of animals are required to support its efficacy for clinical application.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antivirales/uso terapéutico , Antígeno B7-H1/inmunología , Leucosis Bovina Enzoótica/tratamiento farmacológico , Virus de la Leucemia Bovina/metabolismo , Proteínas Virales/inmunología , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Reacciones Antígeno-Anticuerpo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Bovinos , Células Cultivadas , Leucosis Bovina Enzoótica/prevención & control , Leucosis Bovina Enzoótica/virología , Interferón gamma , Virus de la Leucemia Bovina/fisiología , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Activación de Linfocitos/efectos de los fármacos , Ratas , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/farmacología , Carga Viral
18.
Immun Inflamm Dis ; 4(1): 52-63, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27042304

RESUMEN

CD4(+)CD25(high)Foxp3(+) T cells suppress excess immune responses that lead to autoimmune and/or inflammatory diseases, and maintain host immune homeostasis. However, CD4(+)CD25(high)Foxp3(+) T cells reportedly contribute to disease progression by over suppressing immune responses in some chronic infections. In this study, kinetic and functional analyses of CD4(+)CD25(high)Foxp3(+) T cells were performed in cattle with bovine leukemia virus (BLV) infections, which have reported immunosuppressive characteristics. In initial experiments, production of the Th1 cytokines IFN-γ and TNF-α was reduced in BLV-infected cattle compared with uninfected cattle, and numbers of IFN-γ or TNF-α producing CD4(+) T cells decreased with disease progression. In contrast, IFN-γ production by NK cells was inversely correlated with BLV proviral loads in infected cattle. Additionally, during persistent lymphocytosis disease stages, NK cytotoxicity was depressed as indicated by low expression of the cytolytic protein perforin. Concomitantly, total CD4(+)CD25(high)Foxp3(+) T cell numbers and percentages of TGF-ß(+) cells were increased, suggesting that TGF-ß plays a role in the functional declines of CD4(+) T cells and NK cells. In further experiments, recombinant bovine TGF-ß suppressed IFN-γ and TNF-α production by CD4(+) T cells and NK cytotoxicity in cultured cells. These data suggest that TGF-ß from CD4(+)CD25(high)Foxp3(+) T cells is immunosuppressive and contributes to disease progression and the development of opportunistic infections during BLV infection.

19.
Retrovirology ; 12: 106, 2015 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-26715158

RESUMEN

BACKGROUND: Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, the most common neoplastic disease of cattle. BLV is closely related to human T cell leukemia virus. B cell epitopes are important for the use of antibodies as therapeutic agents, the epitope-driven vaccine design, and immunological assays. A common B cell epitope for BLV has not yet been found due to individual differences in disease susceptibility. RESULTS: We used a peptide microarray with 156 synthetic 15-mer peptides covering the envelope glycoprotein gp51 and the Gag proteins p15, p24, and p12 to map B cell epitope and one B cell epitope, gp51p16, was recognized by all four cattle experimentally infected with BLV. A newly developed high-throughput peptide ELISA system revealed 590 (91.2%) of 647 cattle naturally infected with BLV, carrying 25 different bovine leukocyte antigen class II DRB3 (BoLA-DRB3) alleles, responded to a 20-mer gp51p16-C peptide containing a C-terminal cysteine and gp51p16. Alanine mutation and comparison of the sequences at 17 amino acid positions within gp51p16-C revealed that R7, R9, F10, V16, and Y18 were the common binding sites to BLV antibodies, and two of these sites were found to be highly conserved. Transient expression in the cells of five infectious molecular clones of BLV with a single alanine mutation at five common antibody binding sites had no effect syncytia formation of the gp51 protein. In addition, the mutant proteins, R7A and R9A had no effect on the expression of gp51 protein; the gp51 protein expressions of F10A, V16A and Y18A were lower than that of the wild type protein. CONCLUSIONS: This is the first report to identify a common B cell epitope in BLV by comprehensive screening of BLV-infected cattle with varied genetic backgrounds in BoLA-DRB3. Our results have important implications for disease control and diagnosis.


Asunto(s)
Antígenos Virales/inmunología , Leucosis Bovina Enzoótica/inmunología , Epítopos de Linfocito B/inmunología , Virus de la Leucemia Bovina/genética , Virus de la Leucemia Bovina/inmunología , Péptidos/inmunología , Alanina/genética , Alelos , Animales , Sitios de Unión , Bovinos , Leucosis Bovina Enzoótica/virología , Ensayo de Inmunoadsorción Enzimática , Epítopos de Linfocito B/química , Productos del Gen gag/química , Productos del Gen gag/genética , Productos del Gen gag/inmunología , Ensayos Analíticos de Alto Rendimiento , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/inmunología , Virus de la Leucemia Bovina/química , Mutación , Péptidos/síntesis química , Péptidos/química , Análisis por Matrices de Proteínas , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología
20.
Vaccine ; 33(51): 7194-7202, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26552001

RESUMEN

Bovine leukemia virus (BLV) is associated with enzootic bovine leukosis and is closely related to human T cell leukemia virus (HTLV). The cytotoxic T lymphocyte (CTL) plays a key role in suppressing the progression of disease caused by BLV. T and B cell epitopes in BLV have been studied, but CD8(+) CTL epitopes remain poorly understood. We used a library of 115 synthetic peptides covering the entirety of the Env proteins (gp51 and gp30), the Gag proteins (p15, p24, and p12), and the Tax protein of BLV to identify 11 novel CD8(+) T cell epitopes (gp51N5, gp51N11, gp51N12, gp30N5, gp30N6, gp30N8, gp30N16, tax16, tax18, tax19, and tax20) in four calves experimentally infected with BLV. The number of CD8(+) T cell epitopes that could be identified in each calf correlated with the BLV proviral load. Interestingly, among the 11 epitopes identified, only gp51N11 was capable of inducing CD8(+) T cell-mediated cytotoxicity in all four calves, but it is not a suitable vaccine target because it shows a high degree of polymorphism according to the Wu-Kabat variability index. By contrast, no CTL epitopes were identified from the Gag structural protein. In addition, several epitopes were obtained from gp30 and Tax, indicating that cellular immunity against BLV is strongly targeted to these proteins. CD8(+) CTL epitopes from gp30 and Tax were less polymorphic than epitopes from. Indeed, peptides tax16, tax18, tax19, and tax20 include a leucine-rich activation domain that encompasses a transcriptional activation domain, and the gp30N16 peptide contains a proline-rich region that interacts with a protein tyrosine phosphatase SHP1 to regulate B cell activation. Moreover, at least one CD8(+) CTL epitope derived from gp30 was identified in each of the four calves. These results indicate that BLV gp30 may be the best candidate for the development of a BLV vaccine.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Mapeo Epitopo , Epítopos de Linfocito T/análisis , Virus de la Leucemia Bovina/inmunología , Animales , Bovinos , Pruebas Inmunológicas de Citotoxicidad , Leucosis Bovina Enzoótica/inmunología , Productos del Gen env/inmunología , Productos del Gen gag/inmunología , Productos del Gen tax/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...