Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 30(30): 305803, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29897048

RESUMEN

In this work we investigated the time behavior of the polarization of bulk 13C nuclei in diamond above the thermal equilibrium. This nonthermal nuclear hyperpolarization is achieved by cross relaxation between two nitrogen related paramagnetic defect species in diamond in combination with optical pumping. The decay of the hyperpolarization at four different magnetic fields is measured. Furthermore, we use the comparison with conventional nuclear resonance measurements to identify the involved distances of the nuclear spin with respect to the defects and therefore the coupling strengths. Also, a careful look at the linewidth of the signal give valuable information to piece together the puzzle of the hyperpolarization mechanism.

2.
Rev Sci Instrum ; 83(8): 083113, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22938280

RESUMEN

A nuclear magnetic resonance apparatus for experiments in pulsed high magnetic fields is described. The magnetic field pulses created together with various magnet coils determine the requirements such an apparatus has to fulfill to be operated successfully in pulsed fields. Independent of the chosen coil it is desirable to operate the entire experiment at the highest possible bandwidth such that a correspondingly large temporal fraction of the magnetic field pulse can be used to probe a given sample. Our apparatus offers a bandwidth of up to 20 MHz and has been tested successfully at the Hochfeld-Magnetlabor Dresden, even in a very fast dual coil magnet that has produced a peak field of 94.2 T. Using a medium-sized single coil with a significantly slower dependence, it is possible to perform advanced multi-pulse nuclear magnetic resonance experiments. As an example we discuss a Carr-Purcell spin echo sequence at a field of 62 T.

3.
Phys Rev Lett ; 108(17): 177602, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22680905

RESUMEN

The many-body quantum dynamics of dipolar coupled nuclear spins I=1/2 on an otherwise isolated cubic lattice are studied with nuclear magnetic resonance. By increasing the signal-to-noise ratio by 2 orders of magnitude compared with previous reports for the free induction decay (FID) of (19)F in CaF(2) we obtain new insight into its long-time behavior. We confirm that the tail of the FID is an exponentially decaying cosine, but our measurements reveal a second decay mode with comparable frequency but twice the decay constant. This result is in agreement with a recent theoretical prediction for the FID in terms of eigenvalues for the time evolution of chaotic many-body quantum systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA