Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Phys ; 50(1): 71-87, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38150168

RESUMEN

Methyl damage to DNA bases is common in the cell nucleus. O6-alkylguanine-DNA alkyl transferase (AGT) may be a promising candidate for direct damage reversal in methylated DNA (mDNA) at the O6 point of the guanine. Indeed, atomic-level investigations in the contact region of AGT-DNA complex can provide an in-depth understanding of their binding mechanism, allowing to evaluate the silico-drug nature of AGT and its utility in removing methyl damage in DNA. In this study, molecular dynamics (MD) simulation was utilized to examine the flipping of methylated nucleotide, the binding mechanism between mDNA and AGT, and the comparison of binding strength prior and post methyl transfer to AGT. The study reveals that methylation at the O6 atom of guanine weakens the hydrogen bond (H-bond) between guanine and cytosine, permitting for the flipping of such nucleotide. The formation of a H-bond between the base pair of methylated nucleotide (i.e., cytosine) and the intercalated arginine of AGT also forces the nucleotide to rotate. Following that, electrostatics and van der Waals contacts as well as hydrogen bonding contribute to form the complex of DNA and protein. The stronger binding of AGT with DNA before methyl transfer creates the suitable condition to transfer methyl adduct from DNA to AGT.


Asunto(s)
Reparación del ADN , O(6)-Metilguanina-ADN Metiltransferasa , O(6)-Metilguanina-ADN Metiltransferasa/química , O(6)-Metilguanina-ADN Metiltransferasa/genética , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Nucleótidos/química , ADN/química , Guanina/química , Guanina/metabolismo , Citosina
2.
J Biomol Struct Dyn ; 41(19): 9957-9966, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36473709

RESUMEN

A mutation at the sixth residue, glutamic acid to valine, in beta chain of hemoglobin distorts the entire shape of hemoglobin into a sickle shape. The investigation of the binding mechanisms of different chains of hemoglobin under the mutated condition can give an understanding of the molecular distortion. In this work, we have studied the binding mechanism between two chains in the dimer structure of the R-state conformation of carbonmonoxyl sickle hemoglobin and is compared with that of normal hemoglobin by using molecular dynamics simulations. The binding strength between α-chain (PROA) and ß-chain (PROB) in hemoglobin dimer has been analyzed by estimating hydrogen bonds, salt bridges, hydrophobic interactions and non-bonded interactions (electrostatics and van der Waals). The quantitative estimation of aforementioned interactions depicts that the structural stability of normal hemoglobin dimer is found to be greater than that of sickle one. The outcomes of such interactions are also supported by the estimated free energy between the chains in R-state conformation of the dimers. The difference of binding free energy, calculated by utilizing the umbrella sampling technique, is found to be ≈ (0.67 ± 0.06) kcal/mol.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Anemia de Células Falciformes , Hemoglobinas , Humanos , Hemoglobinas/química , Conformación Proteica , Simulación de Dinámica Molecular , Hemoglobina Falciforme , Anemia de Células Falciformes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...