Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 45(6): 1095-1114, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38267546

RESUMEN

The integrated stress response (ISR) triggered in response to various cellular stress enables mammalian cells to effectively cope with diverse stressful conditions while maintaining their normal functions. Four kinases (PERK, PKR, GCN2, and HRI) of ISR regulate ISR signaling and intracellular protein translation via mediating the phosphorylation of eukaryotic translation initiation factor 2 α (eIF2α) at Ser51. Early ISR creates an opportunity for cells to repair themselves and restore homeostasis. This effect, however, is reversed in the late stages of ISR. Currently, some studies have shown the non-negligible impact of ISR on diseases such as ischemic diseases, cognitive impairment, metabolic syndrome, cancer, vanishing white matter, etc. Hence, artificial regulation of ISR and its signaling with ISR modulators becomes a promising therapeutic strategy for relieving disease symptoms and improving clinical outcomes. Here, we provide an overview of the essential mechanisms of ISR and describe the ISR-related pathways in organelles including mitochondria, endoplasmic reticulum, Golgi apparatus, and lysosomes. Meanwhile, the regulatory effects of ISR modulators and their potential application in various diseases are also enumerated.


Asunto(s)
Estrés Fisiológico , Humanos , Animales , Estrés Fisiológico/fisiología , Orgánulos/metabolismo , Transducción de Señal/fisiología , Mitocondrias/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo
2.
Acta Pharmacol Sin ; 43(8): 1889-1904, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35017669

RESUMEN

The nicotinamide adenine dinucleotide (NAD+/NADH) and nicotinamide adenine dinucleotide phosphate (NADP+/NADPH) redox couples function as cofactors or/and substrates for numerous enzymes to retain cellular redox balance and energy metabolism. Thus, maintaining cellular NADH and NADPH balance is critical for sustaining cellular homeostasis. The sources of NADPH generation might determine its biological effects. Newly-recognized biosynthetic enzymes and genetically encoded biosensors help us better understand how cells maintain biosynthesis and distribution of compartmentalized NAD(H) and NADP(H) pools. It is essential but challenging to distinguish how cells sustain redox couple pools to perform their integral functions and escape redox stress. However, it is still obscure whether NADPH is detrimental or beneficial as either deficiency or excess in cellular NADPH levels disturbs cellular redox state and metabolic homeostasis leading to redox stress, energy stress, and eventually, to the disease state. Additional study of the pathways and regulatory mechanisms of NADPH generation in different compartments, and the means by which NADPH plays a role in various diseases, will provide innovative insights into its roles in human health and may find a value of NADPH for the treatment of certain diseases including aging, Alzheimer's disease, Parkinson's disease, cardiovascular diseases, ischemic stroke, diabetes, obesity, cancer, etc.


Asunto(s)
NAD , Fosfatos , Metabolismo Energético , Humanos , NAD/metabolismo , NADP , Oxidación-Reducción
3.
Biomed Pharmacother ; 111: 1478-1498, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30841463

RESUMEN

Reactive oxygen species (ROS) are the metabolites of oxygen that plays a significant role in cell signaling and homeostasis. Under normal conditions, ROS formation is stabilized by various antioxidant defense systems (ROS scavengers). Several studies in both in-vitro and in-vivo models, together with clinical data indicated that increased production ROS and oxidative stress plays a crucial role in the development and progression of endothelial dysfunction. The interactions between the main cellular sources of ROS, such as mitochondria and NADPH oxidases, however, remain unclear. The purpose of this review is to outline various sources of ROS and describe the crosstalk between NADPH oxidase and mitochondria. Further, we will discuss different antioxidants that lower ROS production and ROS-induced pathological conditions such as aging, atherosclerosis, diabetes, hypertension, and degenerative neurological disorders. In this review, we have mainly focused on antioxidants that inhibit NADPH oxidase and mitochondrial sources of ROS. Moreover, the modification of antioxidants (targeted therapy) may be a significant approach for management of oxidative stress induced pathophysiological complications.


Asunto(s)
Mitocondrias/metabolismo , NADPH Oxidasas/metabolismo , Animales , Antioxidantes/metabolismo , Humanos , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo
4.
Biomed Pharmacother ; 102: 689-698, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29604588

RESUMEN

Cardiovascular diseases (CVDs) are considered as the major reason for mortality and morbidity worldwide. Substantial evidence suggests that increased oxidative stress plays a significant role in the pathogenesis of CVDs, including atherosclerosis, hypertension, vascular endothelial dysfunction and ischemic heart disease. Cellular oxidative stress results in the release of toxic free radicals by endothelial cells and vascular smooth muscle cells that interact with cell components such as protein, DNA or lipid resulting in cardiovascular pathology. Silymarin has antioxidant activities against CVDs and offers protection against oxidative stress-induced hypertension, atherosclerosis and cardiac toxicity. We present a comprehensive review regarding the oxidative stress and protective effects of silymarin in CVDs management. We also aim to provide mechanistic insight of the mechanisms of silymarin action in oxidative stress-induced CVDs.


Asunto(s)
Antioxidantes/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/patología , Estrés Oxidativo , Silimarina/uso terapéutico , Animales , Antioxidantes/farmacología , Humanos , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología , Sustancias Protectoras/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Silimarina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA