Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Water Res ; 255: 121472, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38552492

RESUMEN

The creation of large amounts of excess sludge and residual nitrogen are critical issues in wastewater biotreatment. This study introduced Fe(II) into an oligotrophic anaerobic reactor (OARFe) that was implemented to modify an anoxic-oxic process to motivate in-situ sludge reduction and enhance denitrification under an effective electron shuttle among organic matter, nitrogen, and Fe. The addition of 15 mg L-1 Fe(II) resulted in a sludge reduction efficiency reached 32.0% with a decreased effluent nitrate concentration of 33.3%. This was mostly attributed to the electron transfer from Fe(II) to organic matters and nitrogen species in OARFe. The participation of Fe(II) led to the upregulation of Geothrix and Terrimonas, which caused active organic matter hydrolysis and cell lysis to stimulate the release of extracellular polymeric substances (EPS) and substance transfer between each layer of EPS. The higher utilization of released bioavailable dissolved organic matter improved endogenous denitrification, which can be combined with iron autotrophic denitrification to realize multiple electron donor-based nitrogen removal pathways, resulting in an increased nitrate removal rate of 58.2% in the absence of external carbon sources. These functional bacteria associated with the transformation of nitrogen and carbon and cycling between ferrous and ferric ions were enriched in OARFe, which contributed to efficient electron transport occurred both inside and outside the cell and increased 2,3,5-triphenyltetrazolium chloride electronic transport system activity by 46.9%. This contributed to the potential operational costs of chemical addition and sludge disposal of Fe-AO being 1.9 times lower than those of conventional A2O processes. These results imply that the addition of ferrous ions to an oligotrophic anaerobic zone for wastewater treatment has the potential for low-cost pollution control.

2.
Environ Sci Pollut Res Int ; 30(21): 60694-60703, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37037935

RESUMEN

Efficient removal of 4-aminophenylarsonic acid from contaminated water sources is essential to mitigate arsenic pollution. We proposed a competent technique to achieve 4-aminophenylarsonic acid removal via adsorption on enhanced α-FeOOH using various concentrations of Mn(VII). The elimination rate of 4-aminophenylarsonic acid applying FeOOH with Mn(VII) was dependent on acidic conditions. More than 99.9% of 4-aminophenylarsonic acid was eliminated in a 6-min reaction time under acidic conditions. The reaction of 4-aminophenylarsonic acid was fast at 4.0 and 5.0 pH, with its complete oxidation into arsenate and the liberation of manganese Mn(II) in the initial stage of the reaction. Similarly, the reaction rate constant (kobs) decreased from 0.7048 ± 0.02 to 0.00155 ± 0.00007 as the pH increased from 4.0 to 9.0. Oxidation capacity was considerably enhanced via the removal of electrons from 4-aminophenylarsonic acid to Mn(VII) after the creation of its radical intermediate and further change in Mn(III) to Mn(II) in the solution. The results showed that Mn(VII) played a crucial role in 4-aminophenylarsonic acid degradation at a low pH (e.g., 4.0), and the oxidation process proceeded in different manners, namely, electron transfer, hydroxylation, and ring-opening. These results illustrated that Mn(VII) is an effective, economic purification process to mitigate 4-aminophenylarsonic acid generated from poultry waste.


Asunto(s)
Óxidos , Contaminantes Químicos del Agua , Compuestos de Manganeso , Agua , Oxidación-Reducción , Manganeso
3.
Water Res ; 216: 118292, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35421667

RESUMEN

If we can use toxic aromatic compounds as supplementary carbon source, the simultaneous removal of nitrate (NO3-) and aromatic compounds may be achieved at much lower chemical costs. This study uses the expanded granular sludge bed (EGSB) reactors to investigate the hypersaline (> 3%) denitrification performance, the removal of aromatic compounds, i.e., aniline, phenol, and their mixture, and the mechanisms involved in. The four reactors exhibit high removal efficiency of NO3- (> 92.8%) and aromatic compounds (> 73.9%) at 0-1200 mg/L of aromatic compounds. The formation of toxic intermediates such as catechol and azo dyes is revealed by gas chromatography mass spectrometry (GC-MS) with and without N,O-Bis(trimethylsilyl) trifluoroacetamide (BSTFA) derivation, and their toxic effects lead to the lower cell survival ratios after exposing to phenol (64.2% ∼ 68.9%) than to aniline and mixture (72.7% ∼ 78.0%). The stable performance is associated with the more secretion of extracellular polymeric substances (EPS) and the adsorption of pollutants on EPS, and this was indicated from the higher fluorescence intensity in three-dimensional excitation-emission matrix (3D-EEM). Moreover, the Halomonas and Azoarcus show high abundance and play important roles in the removal of both NO3- and aromatic compounds. Besides, quantitative real time PCR (RT-qPCR) results demonstrate the key role of highly abundant nosZ and nirS genes in denitrification. The toxic organics in industrial wastewaters are potentially feasible carbon sources for denitrification even under high-salinity stress.


Asunto(s)
Desnitrificación , Contaminantes Ambientales , Reactores Biológicos , Carbono , Nitratos , Nitrógeno , Óxidos de Nitrógeno , Compuestos Orgánicos , Fenol , Aguas del Alcantarillado
4.
Chemosphere ; 252: 126478, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32197179

RESUMEN

Biological denitrification is an environmentally sound pathway for the elimination of nitrogen pollution in wastewater treatment. Extreme environmental conditions, such as the co-existence of toxic organic pollutants, can affect biological denitrification. However, the potential underlying mechanism remains largely unexplored. Herein, the effect of a model pollutant, hydroxyethane-(1,1-bisphosphonic acid) (HEDP), a widely applied and consumed bisphosphonate, on microbial denitrification was investigated by exploring the metabolic and transcriptional responses of an isolated denitrifier, Pannonibacter sp. strain DN. Results showed that nitrate removal efficiency decreased from 85% to 50% with an increase in HEDP concentration from 0 to 3.5 mM, leading to nitrite accumulation of 204 mg L-1 in 3.5 mM HEDP. This result was due to the lower bacterial population count and reduction in the live cell percentage. Further investigation revealed that HEDP caused a decrease in membrane potential from 0.080 ±â€¯0.005 to 0.020 ±â€¯0.002 with the increase in HEDP from 0 to 3.5 mM. This hindered electron transfer, which is required for nitrate transformation into nitrogen gas. Moreover, transcriptional profiling indicated that HEDP enhanced the genes involved in ROS (O2-) scavenging, thus protecting cells against oxidative stress damage. However, the suppression of genes responsible for the production of NADH/FADH2 in tricarboxylic acid cycle (TCA), NADH catalyzation (NADH dehydrogenase) in (electron transport chain) ETC system and denitrifying genes, especially nor and nir, in response to 2.5 mM HEDP were identified as the key factor inhibiting transfer of electron from TCA cycle to denitrifying enzymes through ETC system.


Asunto(s)
Desnitrificación/efectos de los fármacos , Ácido Etidrónico/toxicidad , Rhodobacteraceae/efectos de los fármacos , Bacterias/metabolismo , Transporte de Electrón , Electrones , Nitratos/metabolismo , Nitritos/farmacología , Nitrógeno/metabolismo , Oxidación-Reducción , Aguas Residuales
5.
Sci Total Environ ; 601-602: 713-722, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28577406

RESUMEN

Para arsanilic acid (p-ASA) is extensively used as feed additives in poultry industry, resulting contaminates soil and natural water sources through the use of poultry litter as a fertilizer in croplands. Thus, removal of p-ASA prior to its entering environments is significant to control their environmental risk. Herein, we studied Fe-Mn framework and cubic Fe(OH)3 as promising novel adsorbents for the removal of p-ASA from aqueous solution. The chemical and micro-structural properties of Fe-Mn framework and cubic Fe(OH)3 materials were characterized by X-ray diffraction patterns (XRD), nitrogen adsorption (SBET), zeta (ζ-) potential, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectra (XPS). The maximum adsorption capacity for p-ASA on Fe-Mn framework and cubic Fe(OH)3 was determined to be 1.3mmolg-1 and 0.72mmolg-1 at pH4.0, respectively. Adsorption of p-ASA decreased gradually with increasing pH indicated that adsorption was strongly pH dependent. Azophenylarsonic acid was identified as an oxidation intermediate product of p-ASA after adsorption on Fe-Mn framework. Plausible removal mechanism for p-ASA by Fe-Mn framework was proposed. The obtained results gain insight into the potential applicability of Fe-Mn framework, which can be potentially important for the removal of p-ASA from water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA