Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1583, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383515

RESUMEN

Peripheral T cell lymphomas are typically aggressive with a poor prognosis. Unlike other hematologic malignancies, the lack of target antigens to discriminate healthy from malignant cells limits the efficacy of immunotherapeutic approaches. The T cell receptor expresses one of two highly homologous chains [T cell receptor ß-chain constant (TRBC) domains 1 and 2] in a mutually exclusive manner, making it a promising target. Here we demonstrate specificity redirection by rational design using structure-guided computational biology to generate a TRBC2-specific antibody (KFN), complementing the antibody previously described by our laboratory with unique TRBC1 specificity (Jovi-1) in targeting broader spectrum of T cell malignancies clonally expressing either of the two chains. This permits generation of paired reagents (chimeric antigen receptor-T cells) specific for TRBC1 and TRBC2, with preclinical evidence to support their efficacy in T cell malignancies.


Asunto(s)
Neoplasias , Linfocitos T , Humanos , Inmunoterapia , Receptores de Antígenos de Linfocitos T
2.
Blood ; 143(2): 118-123, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37647647

RESUMEN

ABSTRACT: CD19-negative relapse is a leading cause of treatment failure after chimeric antigen receptor (CAR) T-cell therapy for acute lymphoblastic leukemia. We investigated a CAR T-cell product targeting CD19 and CD22 generated by lentiviral cotransduction with vectors encoding our previously described fast-off rate CD19 CAR (AUTO1) combined with a novel CD22 CAR capable of effective signaling at low antigen density. Twelve patients with advanced B-cell acute lymphoblastic leukemia were treated (CARPALL [Immunotherapy with CD19/22 CAR Redirected T Cells for High Risk/Relapsed Paediatric CD19+ and/or CD22+ Acute Lymphoblastic Leukaemia] study, NCT02443831), a third of whom had failed prior licensed CAR therapy. Toxicity was similar to that of AUTO1 alone, with no cases of severe cytokine release syndrome. Of 12 patients, 10 (83%) achieved a measurable residual disease (MRD)-negative complete remission at 2 months after infusion. Of 10 responding patients, 5 had emergence of MRD (n = 2) or relapse (n = 3) with CD19- and CD22-expressing disease associated with loss of CAR T-cell persistence. With a median follow-up of 8.7 months, there were no cases of relapse due to antigen-negative escape. Overall survival was 75% (95% confidence interval [CI], 41%-91%) at 6 and 12 months. The 6- and 12-month event-free survival rates were 75% (95% CI, 41%-91%) and 60% (95% CI, 23%-84%), respectively. These data suggest dual targeting with cotransduction may prevent antigen-negative relapse after CAR T-cell therapy.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores Quiméricos de Antígenos , Humanos , Niño , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos/genética , Recurrencia , Antígenos CD19 , Linfocitos T , Lectina 2 Similar a Ig de Unión al Ácido Siálico
4.
Front Immunol ; 14: 1119350, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37334382

RESUMEN

SHP1 and SHP2 are SH2 domain-containing proteins which have inhibitory phosphatase activity when recruited to phosphorylated ITIMs and ITSMs on inhibitory immune receptors. Consequently, SHP1 and SHP2 are key proteins in the transmission of inhibitory signals within T cells, constituting an important point of convergence for diverse inhibitory receptors. Therefore, SHP1 and SHP2 inhibition may represent a strategy for preventing immunosuppression of T cells mediated by cancers hence improving immunotherapies directed against these malignancies. Both SHP1 and SHP2 contain dual SH2 domains responsible for localization to the endodomain of inhibitory receptors and a protein tyrosine phosphatase domain which dephosphorylates and thus inhibits key mediators of T cell activation. We explored the interaction of the isolated SH2 domains of SHP1 and SHP2 to inhibitory motifs from PD1 and identified strong binding of both SH2 domains from SHP2 and more moderate binding in the case of SHP1. We next explored whether a truncated form of SHP1/2 comprising only of SH2 domains (dSHP1/2) could act in a dominant negative fashion by preventing docking of the wild type proteins. When co-expressed with CARs we found that dSHP2 but not dSHP1 could alleviate immunosuppression mediated by PD1. We next explored the capacity of dSHP2 to bind with other inhibitory receptors and observed several potential interactions. In vivo we observed that the expression of PDL1 on tumor cells impaired the ability of CAR T cells to mediate tumor rejection and this effect was partially reversed by the co-expression of dSHP2 albeit at the cost of reduced CAR T cell proliferation. Modulation of SHP1 and SHP2 activity in engineered T cells through the expression of these truncated variants may enhance T cell activity and hence efficacy in the context of cancer immunotherapy.


Asunto(s)
Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Proteína Tirosina Fosfatasa no Receptora Tipo 6 , Linfocitos T , Proteínas Portadoras , Inmunidad , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Proteínas/metabolismo , Linfocitos T/metabolismo
5.
Cancer Immunol Res ; 11(9): 1203-1221, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37352396

RESUMEN

Adoptive T-cell therapy aims to achieve lasting tumor clearance, requiring enhanced engraftment and survival of the immune cells. Cytokines are paramount modulators of T-cell survival and proliferation. Cytokine receptors signal via ligand-induced dimerization, and this principle has been hijacked utilizing nonnative dimerization domains. A major limitation of current technologies resides in the absence of a module that recapitulates the natural cytokine receptor heterodimeric pairing. To circumvent this, we created a new engineered cytokine receptor able to constitutively recreate receptor-heterodimer utilizing the heterodimerization domain derived from the IgG1 antibody (dFab_CCR). We found that the signal delivered by the dFab_CCR-IL2 proficiently mimicked the cytokine receptor heterodimerization, with transcriptomic signatures like those obtained by activation of the native IL2 receptor. Moreover, we found that this dimerization structure was agnostic, efficiently activating signaling through four cytokine receptor families. Using a combination of in vivo and in vitro screening approaches, we characterized a library of 18 dFab_CCRs coexpressed with a clinically relevant solid tumor-specific GD2-specific chimeric antigen receptor (CAR). Based on this characterization, we suggest that the coexpression of either the common ß-chain GMCSF or the IL18 dFab_CCRs is optimal to improve CAR T-cell expansion, engraftment, and efficacy. Our results demonstrate how Fab dimerization is efficient and versatile in recapitulating a cytokine receptor heterodimerization signal. This module could be applied for the enhancement of adoptive T-cell therapies, as well as therapies based on other immune cell types. Furthermore, these results provide a choice of cytokine signal to incorporate with adoptive T-cell therapies.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T/genética , Receptores de Citocinas , Neoplasias/patología , Citocinas
6.
Mol Ther ; 31(7): 2089-2104, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-36945773

RESUMEN

CAR T cells recognizing CD19 effectively treat relapsed and refractory B-ALL and DLBCL. However, CD19 loss is a frequent cause of relapse. Simultaneously targeting a second antigen, CD22, may decrease antigen escape, but is challenging: its density is approximately 10-fold less than CD19, and its large structure may hamper immune synapse formation. The characteristics of the optimal CD22 CAR are underexplored. We generated 12 distinct CD22 antibodies and tested CARs derived from them to identify a CAR based on the novel 9A8 antibody, which was sensitive to low CD22 density and lacked tonic signaling. We found no correlation between affinity or membrane proximity of recognition epitope within Ig domains 3-6 of CD22 with CART function. The optimal strategy for CD19/CD22 CART co-targeting is undetermined. Co-administration of CD19 and CD22 CARs is costly; single CARs targeting CD19 and CD22 are challenging to construct. The co-expression of two CARs has previously been achieved using bicistronic vectors. Here, we generated a dual CART product by co-transduction with 9A8-41BBζ and CAT-41BBζ (obe-cel), the previously described CD19 CAR. CAT/9A8 CART eliminated single- and double-positive target cells in vitro and eliminated CD19- tumors in vivo. CAT/9A8 CART is being tested in a phase I clinical study (NCT02443831).


Asunto(s)
Linfoma de Burkitt , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T , Recurrencia Local de Neoplasia , Inmunoterapia Adoptiva , Proteínas Adaptadoras Transductoras de Señales , Antígenos CD19 , Anticuerpos , Lectina 2 Similar a Ig de Unión al Ácido Siálico
7.
Sci Rep ; 11(1): 21902, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34754016

RESUMEN

Chimeric antigen receptor (CAR) T cells are a promising form of cancer immunotherapy, although they are often associated with severe toxicities. Here, we present a split-CAR design incorporating separate antigen recognition and intracellular signaling domains. These exploit the binding between the tetracycline repressor protein and a small peptide sequence (TIP) to spontaneously assemble as a functional CAR. Addition of the FDA-approved, small molecule antibiotic minocycline, acts as an "off-switch" by displacing the signaling domain and down-tuning CAR T activity. Here we describe the optimization of this split-CAR approach to generate a CAR in which cytotoxicity, cytokine secretion and proliferation can be inhibited in a dose-dependent and reversible manner. Inhibition is effective during on-going CAR T cell activation and inhibits activation and tumor control in vivo. This work shows how optimization of split-CAR structure affects function and adds a novel design allowing easy CAR inhibition through an FDA-approved small molecule.


Asunto(s)
Minociclina/farmacología , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/metabolismo , Animales , Técnicas de Cocultivo , Femenino , Células HEK293 , Humanos , Ratones , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal , Linfocitos T/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Sci Transl Med ; 12(571)2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239386

RESUMEN

The reprogramming of a patient's immune system through genetic modification of the T cell compartment with chimeric antigen receptors (CARs) has led to durable remissions in chemotherapy-refractory B cell cancers. Targeting of solid cancers by CAR-T cells is dependent on their infiltration and expansion within the tumor microenvironment, and thus far, fewer clinical responses have been reported. Here, we report a phase 1 study (NCT02761915) in which we treated 12 children with relapsed/refractory neuroblastoma with escalating doses of second-generation GD2-directed CAR-T cells and increasing intensity of preparative lymphodepletion. Overall, no patients had objective clinical response at the evaluation point +28 days after CAR-T cell infusion using standard radiological response criteria. However, of the six patients receiving ≥108/meter2 CAR-T cells after fludarabine/cyclophosphamide conditioning, two experienced grade 2 to 3 cytokine release syndrome, and three demonstrated regression of soft tissue and bone marrow disease. This clinical activity was achieved without on-target off-tumor toxicity. Targeting neuroblastoma with GD2 CAR-T cells appears to be a valid and safe strategy but requires further modification to promote CAR-T cell longevity.


Asunto(s)
Neuroblastoma , Receptores Quiméricos de Antígenos , Niño , Humanos , Inmunoterapia Adoptiva , Recurrencia Local de Neoplasia , Neuroblastoma/terapia , Receptores de Antígenos de Linfocitos T/genética , Receptores Quiméricos de Antígenos/genética , Linfocitos T , Microambiente Tumoral
9.
Blood ; 124(8): 1277-87, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-24970931

RESUMEN

A compact marker/suicide gene that utilizes established clinical-grade reagents and pharmaceuticals would be of considerable practical utility to T-cell cancer gene therapy. Marker genes enable measurement of transduction and allow selection of transduced cells, whereas suicide genes allow selective deletion of administered T cells in the face of toxicity. We have created a highly compact marker/suicide gene for T cells combining target epitopes from both CD34 and CD20 antigens (RQR8). This construct allows selection with the clinically approved CliniMACS CD34 system (Miltenyi). Further, the construct binds the widely used pharmaceutical antibody rituximab, resulting in selective deletion of transgene-expressing cells. We have tested the functionality of RQR8 in vitro and in vivo as well as in combination with T-cell engineering components. We predict that RQR8 will make T-cell gene therapy both safer and cheaper.


Asunto(s)
Antígenos CD20/inmunología , Antígenos CD34/inmunología , Genes Transgénicos Suicidas , Terapia Genética/métodos , Neoplasias/terapia , Linfocitos T/trasplante , Aloinjertos , Animales , Antígenos CD20/genética , Antígenos CD20/metabolismo , Antígenos CD34/genética , Antígenos CD34/metabolismo , Epítopos , Ratones , Ratones Endogámicos BALB C , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...