Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 12: 765976, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867810

RESUMEN

Adaptive changes in glucose homeostasis during pregnancy require proliferation of insulin-secreting beta-cells in the pancreas, together with increased sensitivity for glucose-stimulated insulin secretion. Increased concentrations of maternal prolactin/placental lactogen contribute to these changes, but the site of action remains uncertain. Use of Cre-lox technology has generated pancreas-specific prolactin receptor (Prlr) knockouts that demonstrate the development of a gestational diabetic like state. However, many Cre-lines for the pancreas also express Cre in the hypothalamus and prolactin could act centrally to modulate glucose homeostasis. The aim of the current study was to examine the relative contribution of prolactin action in the pancreas and brain to these pregnancy-induced adaptations in glucose regulation. Deletion of prolactin receptor (Prlr) from the pancreas using Pdx-cre or Rip-cre led to impaired glucose tolerance and increased non-fasting blood glucose levels during pregnancy. Prlrlox/lox /Pdx-Cre mice also had impaired glucose-stimulated insulin secretion and attenuated pregnancy-induced increase in beta-cell fraction. Varying degrees of Prlr recombination in the hypothalamus with these Cre lines left open the possibility that central actions of prolactin could contribute to the pregnancy-induced changes in glucose homeostasis. Targeted deletion of Prlr specifically from the forebrain, including areas of expression induced by Pdx-Cre and Rip-cre, had no effect on pregnancy-induced adaptations in glucose homeostasis. These data emphasize the pancreas as the direct target of prolactin/placental lactogen action in driving adaptive changes in glucose homeostasis during pregnancy.


Asunto(s)
Adaptación Fisiológica/fisiología , Glucosa/metabolismo , Homeostasis/fisiología , Páncreas/metabolismo , Prolactina/metabolismo , Prosencéfalo/metabolismo , Animales , Femenino , Intolerancia a la Glucosa/metabolismo , Hipotálamo/metabolismo , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Placenta/metabolismo , Embarazo , Receptores de Prolactina/metabolismo , Transducción de Señal/fisiología
2.
J Neuroendocrinol ; 32(2): e12827, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31917877

RESUMEN

A population of neurones in the medial part of the medial preoptic area (mPOA) transiently express melanin-concentrating hormone (MCH) in mid to late lactation in the rat, and this expression disappears on weaning. Prolactin is known to mediate many of the physiological adaptations that occur within the dam associated with lactation and the mPOA is well endowed with prolactin receptors (Prlr); hence, we hypothesised that these transiently MCH-expressing cells may be regulated by prolactin. By in situ hybridisation, we show that approximately 60% of the cells expressing prepro-MCH (Pmch) mRNA in the medial part of the mPOA on day 19 of lactation also express Prlr mRNA. To demonstrate that these transiently MCH-expressing cells can acutely respond to prolactin, dams were treated with bromocriptine on the morning of day 19 of lactation and then given vehicle or prolactin 4 hours later. In the prolactin-treated animals, over 80% of the MCH-immunopositive cells were also immunopositive for phosphorylated signal transducer and activator of transcription 5, an indicator of prolactin receptor activation: double immunopositive cells were rare in vehicle-treated animals. Finally, the effect of manipulating the circulating concentrations of prolactin on days 17, 18 and 19 on the number of MCH-immunopositive cells on day 19 was determined. Reducing circulating concentrations of prolactin over days 17, 18 and 19 of lactation with or without a suckling stimulus resulted in a reduction (P < 0.05) in the number of MCH-immunopositive cells in the medial part of the mPOA on day 19 of lactation. Further research is required to determine the functional role(s) of these prolactin-activated transiently MCH-expressing neurones; however, we suggest the most likely role involves adaptations in maternal metabolism to support the final week of lactation.


Asunto(s)
Hormonas Hipotalámicas/metabolismo , Lactancia/metabolismo , Área Preóptica/metabolismo , Prolactina/metabolismo , Precursores de Proteínas/metabolismo , Animales , Femenino , Área Preóptica/efectos de los fármacos , Prolactina/administración & dosificación , ARN Mensajero/metabolismo , Ratas Sprague-Dawley
3.
Cell Rep ; 26(7): 1787-1799.e5, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30759390

RESUMEN

Altered physiological states require neuronal adaptation. In late pregnancy and lactation, a sub-population of the mouse hypothalamic tuberoinfundibular dopaminergic (TIDA) neurons alters their behavior to synthesize and release met-enkephalin rather than dopamine. These neurons normally release dopamine to inhibit prolactin secretion and are activated by prolactin in a short-loop feedback manner. In lactation, dopamine synthesis is suppressed in an opioid-dependent (naloxone-reversible) manner, meaning that prolactin secretion is disinhibited. Conditional deletion of the prolactin receptor in neurons reveals that this change in phenotype appears to be driven by prolactin itself, apparently through an alteration in intracellular signaling downstream of the prolactin receptor that favors enkephalin production instead of dopamine. Thus, prolactin effectively facilitates its own secretion, which is essential for lactation and maternal behavior. These studies provide evidence of a physiologically important, reversible alteration in the behavior of a specific population of hypothalamic neurons in the adult brain.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Hipotálamo/metabolismo , Prolactina/metabolismo , Animales , Femenino , Ratones , Fenotipo , Embarazo
4.
FASEB J ; 33(5): 6115-6128, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30735445

RESUMEN

There is clear evidence for carrier-mediated transport of prolactin into the brain, and it has been widely assumed that prolactin receptors (PRLRs) in the choroid plexus (ChP) might mediate this transport. Using PRLR knockout mice, we recently showed that PRLRs in ChP are not required for prolactin transport into the brain. Hence, the function of PRLR in the ChP remains unknown. PRLR expression is increased in the ChP during lactation, suggesting a possible role in adaptive function of prolactin at this time. To gain insight into prolactin function in the ChP, we have utilized RNA sequencing and NanoString techniques to characterize transcriptional changes in response to differing levels of prolactin at diestrus, during pregnancy, and in lactation. We have observed opposing transcriptional effects of prolactin on the ChP in different physiologic states, being primarily inhibitory during diestrus but stimulatory in lactation. Insulin-like growth factor 2 (Igf2), a highly expressing transcript found in the ChP, showed a 6-fold increase at lactation that returned to baseline on suppression of prolactin levels. These results indicate that Igf2 may be an important downstream mediator of prolactin-induced signaling in the ChP.-Phillipps, H. R., Rand, C. J., Brown, R. S. E., Kokay, I. C., Stanton, J.-A., Grattan, D. R. Prolactin regulation of insulin-like growth factor 2 gene expression in the adult mouse choroid plexus.


Asunto(s)
Encéfalo/metabolismo , Factor II del Crecimiento Similar a la Insulina/genética , Lactancia/metabolismo , Prolactina/metabolismo , Animales , Estro/metabolismo , Femenino , Factor II del Crecimiento Similar a la Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Embarazo/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Prolactina/metabolismo
5.
Endocrinology ; 160(3): 522-533, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30668693

RESUMEN

Kisspeptin has been shown to stimulate prolactin secretion. We investigated whether kisspeptin acts through the Kiss1 receptor (Kiss1r) to regulate dopamine and prolactin. Initially, we evaluated prolactin response in a Kiss1r-deficient mouse line, in which Kiss1r had been knocked into GnRH neurons (Kiss1r-/-R). Intracerebroventricular kisspeptin-10 (Kp-10) increased prolactin release in wild-type but not in Kiss1r-/-R female mice. In ovariectomized, estradiol-treated rats, the Kiss1r antagonist kisspeptin-234 abolished the Kp-10-induced increase in prolactin release but failed to prevent the concomitant reduction in the activity of tuberoinfundibular dopaminergic (TIDA) neurons, as determined by the 3,4-dihydroxyphenylacetic acid/dopamine ratio in the median eminence. Using whole-cell patch clamp recordings in juvenile male rats, we found no direct effect of Kp-10 on the electrical activity of TIDA neurons. In addition, dual-label in situ hybridization in the hypothalamus of female rats showed that Kiss1r is expressed in the periventricular nucleus of the hypothalamus (Pe) and arcuate nucleus of the hypothalamus (ARC) but not in tyrosine hydroxylase (Th)-expressing neurons. Kisspeptin also has affinity for the neuropeptide FF receptor 1 (Npffr1), which was expressed in the majority of Pe dopaminergic neurons but only in a low proportion of TIDA neurons in the ARC. Our findings demonstrate that Kiss1r is necessary to the effect of kisspeptin on prolactin secretion, although TIDA neurons lack Kiss1r and are electrically unresponsive to kisspeptin. Thus, kisspeptin is likely to stimulate prolactin secretion via Kiss1r in nondopaminergic neurons, whereas the colocalization of Npffr1 and Th suggests that Pe dopaminergic neurons may play a role in the kisspeptin-induced inhibition of dopamine release.


Asunto(s)
Dopamina/metabolismo , Kisspeptinas/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Prolactina/metabolismo , Receptores de Kisspeptina-1/metabolismo , Animales , Neuronas Dopaminérgicas/fisiología , Femenino , Masculino , Ratones Noqueados , Ratas Wistar , Receptores de Neuropéptido/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
6.
J Neuroendocrinol ; 30(9): e12634, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30040149

RESUMEN

Prolactin influences a wide range of physiological functions via actions within the central nervous system, as well as in peripheral tissues. A significant limitation in studies investigating these functions is the difficulty in identifying prolactin receptor (Prlr) expression, particularly in the brain. We have developed a novel mouse line using homologous recombination within mouse embryonic stem cells to produce a mouse in which an internal ribosome entry site (IRES) followed by Cre recombinase cDNA is inserted immediately after exon 10 in the Prlr gene, thereby targeting the long isoform of the Prlr. By crossing this Prlr-IRES-Cre mouse with a ROSA26-CAGS-tauGFP (τGFP) reporter mouse line, and using immunohistochemistry to detect τGFP, we were able to generate a detailed map of the distribution of individual Prlr-expressing neurones and fibres throughout the brain of adult mice without the need for amplification of the GFP signal. Because the τGFP is targeted to neurotubules, the labelling detected not only cell bodies, but also processes of prolactin-sensitive neurones. In both males and females, Cre-dependent τGFP expression was localised, with varying degrees of abundance, in a number of brain regions, including the lateral septal nucleus, bed nucleus of the stria terminalis, preoptic and hypothalamic nuclei, medial habenula, posterodorsal medial amygdala, and brainstem regions such as the periaqueductal grey and parabrachial nucleus. The labelling was highly specific, occurring only in cells where we could also detect PrlrmRNA by in situ hybridisation. Apart from two brain areas, the anteroventral periventricular nucleus and the medial preoptic nucleus, the number and distribution of τGFP-immunopositive cells was similar in males and females, suggesting that prolactin may have many equivalent functions in both sexes. These mice provide a valuable tool for investigating the neural circuits underlying the actions of prolactin.


Asunto(s)
Encéfalo/metabolismo , Genes Reporteros , Neuronas/metabolismo , Receptores de Prolactina/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos , Prolactina/metabolismo , Receptores de Prolactina/genética
7.
J Physiol ; 595(11): 3591-3605, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28211122

RESUMEN

KEY POINTS: During lactation, prolactin promotes milk synthesis and oxytocin stimulates milk ejection. In virgin rats, prolactin inhibits the activity of oxytocin-secreting neurones. We found that prolactin inhibition of oxytocin neurone activity is lost in lactation, and that some oxytocin neurones were excited by prolactin in lactating rats. The change in prolactin regulation of oxytocin neurone activity was not associated with a change in activation of intracellular signalling pathways known to couple to prolactin receptors. The change in prolactin regulation of oxytocin neurone activity in lactation might allow coordinated activation of both populations of neurones when required for successful lactation. ABSTRACT: Secretion of prolactin for milk synthesis and oxytocin for milk secretion is required for successful lactation. In virgin rats, prolactin inhibits oxytocin neurones but this effect would be counterproductive during lactation when secretion of both hormones is required for synthesis and delivery of milk to the newborn. Hence, we determined the effects of intracerebroventricular (i.c.v.) prolactin on oxytocin neurones in urethane-anaesthetised virgin, pregnant and lactating rats. Prolactin (2 µg) consistently inhibited oxytocin neurones in virgin and pregnant rats (by 1.9 ± 0.4 and 1.8 ± 0.5 spikes s-1 , respectively), but not in lactating rats; indeed, prolactin excited six of 27 oxytocin neurones by >1 spike s-1 in lactating rats but excited none in virgin or pregnant rats (χ22  = 7.2, P = 0.03). Vasopressin neurones were unaffected by prolactin (2 µg) in virgin rats but were inhibited by 1.1 ± 0.2 spikes s-1 in lactating rats. Immunohistochemistry showed that i.c.v. prolactin increased oxytocin expression in virgin and lactating rats and increased signal transducer and activator of transcription 5 phosphorylation to a similar extent in oxytocin neurones of virgin and lactating rats. Western blotting showed that i.c.v. prolactin did not affect phosphorylation of extracellular regulated kinase 1 or 2, or of Akt in the supraoptic or paraventricular nuclei of virgin or lactating rats. Hence, prolactin inhibition of oxytocin neurones is lost in lactation, which might allow concurrent elevation of prolactin secretion from the pituitary gland and activation of oxytocin neurones for synthesis and delivery of milk to the newborn.


Asunto(s)
Lactancia/metabolismo , Neuronas/metabolismo , Oxitocina/metabolismo , Embarazo/metabolismo , Prolactina/metabolismo , Potenciales de Acción , Animales , Femenino , Neuronas/fisiología , Ratas
8.
J Neurosci ; 36(35): 9173-85, 2016 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-27581458

RESUMEN

UNLABELLED: Tuberoinfundibular dopamine (TIDA) neurons, known as neuroendocrine regulators of prolactin secretion from the pituitary gland, also release GABA within the hypothalamic arcuate nucleus. As these neurons express prolactin receptors (Prlr), prolactin may regulate GABA secretion from TIDA neurons, potentially mediating actions of prolactin on hypothalamic function. To investigate whether GABA is involved in feedback regulation of TIDA neurons, we examined the physiological consequences of conditional deletion of Prlr in GABAergic neurons. For comparison, we also examined mice in which Prlr were deleted from most forebrain neurons. Both neuron-specific and GABA-specific recombination of the Prlr gene occurred throughout the hypothalamus and in some extrahypothalamic regions, consistent with the known distribution of Prlr expression, indicative of knock-out of Prlr. This was confirmed by a significant loss of prolactin-induced phosphorylation of STAT5, a marker of prolactin action. Several populations of GABAergic neurons that were not previously known to be prolactin-sensitive, notably in the medial amygdala, were identified. Approximately 50% of dopamine neurons within the arcuate nucleus were labeled with a GABA-specific reporter, but Prlr deletion from these dopamine/GABA neurons had no effect on feedback regulation of prolactin secretion. In contrast, Prlr deletion from all dopamine neurons resulted in profound hyperprolactinemia. The absence of coexpression of tyrosine hydroxylase, a marker for dopamine production, in GABAergic nerve terminals in the median eminence suggested that rather than a functional redundancy within the TIDA population, the dopamine/GABA neurons in the arcuate nucleus represent a subpopulation with a functional role distinct from the regulation of prolactin secretion. SIGNIFICANCE STATEMENT: Using a novel conditional deletion of the prolactin receptor, we have identified functional subpopulations in hypothalamic dopamine neurons. Although commonly considered a uniform population of neuroendocrine neurons involved in the control of prolactin secretion, we have shown that approximately half of these neurons express GABA as well as dopamine, but these neurons are not necessary for the feedback regulation of prolactin secretion. The absence of tyrosine hydroxylase in GABAergic nerve terminals in the median eminence suggests that only the non-GABAergic dopamine neurons are involved in the control of pituitary prolactin secretion, and the GABAergic subpopulation may function as interneurons within the arcuate nucleus to regulate other aspects of hypothalamic function.


Asunto(s)
Núcleo Arqueado del Hipotálamo/citología , Neuronas Dopaminérgicas/metabolismo , Receptores de Prolactina/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Femenino , Regulación de la Expresión Génica/genética , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN Mensajero/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Radioinmunoensayo , Ratas , Receptores de Prolactina/genética , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Estadísticas no Paramétricas , Ácido gamma-Aminobutírico/farmacología
9.
Endocrinology ; 155(3): 1010-20, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24456164

RESUMEN

Prolactin (PRL) is known to suppress LH secretion. Kisspeptin neurons regulate LH secretion and express PRL receptors. We investigated whether PRL acts on kisspeptin neurons to suppress LH secretion in lactating (Lac) and virgin rats. Lac rats displayed high PRL secretion and reduced plasma LH and kisspeptin immunoreactivity in the arcuate nucleus (ARC). Bromocriptine-induced PRL blockade significantly increased ARC kisspeptin and plasma LH levels in Lac rats but did not restore them to the levels of non-Lac rats. Bromocriptine effects were prevented by the coadministration of ovine PRL (oPRL). Virgin ovariectomized (OVX) rats treated with either systemic or intracerebroventricular oPRL displayed reduction of kisspeptin expression in the ARC and plasma LH levels, and these effects were comparable with those of estradiol treatment in OVX rats. Conversely, estradiol-treated OVX rats displayed increased kisspeptin immunoreactivity in the anteroventral periventricular nucleus, whereas oPRL had no effect in this brain area. The expression of phosphorylated signal transducer and activator of transcription 5 was used to determine whether kisspeptin neurons in the ARC were responsive to PRL. Accordingly, intracerebroventricular oPRL induced expression of phosphorylated signal transducer and activator of transcription 5 in the great majority of ARC kisspeptin neurons in virgin and Lac rats. We provide here evidence that PRL acts on ARC neurons to inhibit kisspeptin expression in female rats. During lactation, PRL contributes to the inhibition of ARC kisspeptin. In OVX rats, high PRL levels suppress kisspeptin expression and reduce LH release. These findings suggest a pathway through which hyperprolactinemia may inhibit LH secretion and thereby cause infertility.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Hormona Luteinizante/metabolismo , Neuronas/metabolismo , Prolactina/metabolismo , Animales , Bromocriptina/química , Estradiol/metabolismo , Femenino , Hiperprolactinemia/metabolismo , Inmunohistoquímica , Fosforilación , Radioinmunoensayo , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Factor de Transcripción STAT5/metabolismo , Ovinos
10.
J Comp Neurol ; 520(5): 1062-77, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21953590

RESUMEN

Prolactin stimulates dopamine release from neuroendocrine dopaminergic (NEDA) neurons in the hypothalamic arcuate nucleus (ARC) to maintain low levels of serum prolactin. Elevated prolactin levels during pregnancy and lactation may mediate actions in other hypothalamic regions such as the paraventricular nucleus (PVN) and rostral preoptic area (rPOA). We predicted that NEDA neurons would be more sensitive prolactin targets than neurons in other regions because they are required to regulate basal prolactin secretion. Moreover, differences in the accessibility of the ARC to prolactin in blood may influence the responsiveness of this population. Therefore, we compared prolactin-induced signaling in different hypothalamic neuronal populations following either systemic or intracerebroventricular (icv) prolactin administration. Phosphorylation of the signal transduction factor, STAT5 (pSTAT5), was used to identify prolactin-responsive neurons. In response to systemic prolactin, pSTAT5-labeled cells were widely observed in the ARC but absent from the rPOA and PVN. Many of these responsive cells in the ARC were identified as NEDA neurons. The lowest icv prolactin dose (10 ng) induced pSTAT5 in the ARC, but with higher doses (>500 ng) pSTAT5 was detected in numerous regions, including the rPOA and PVN. NEDA neurons were maximally labeled with nuclear pSTAT5 in response to 500 ng prolactin and appeared to be more sensitive than dopaminergic neurons in the rPOA. Subpopulations of oxytocin neurons in the hypothalamus were also found to be differentially sensitive to prolactin. These data suggest that differences in the accessibility of the arcuate nucleus to prolactin, together with intrinsic differences in the NEDA neurons, may facilitate homeostatic feedback regulation of prolactin release.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Hipotálamo/fisiología , Prolactina/fisiología , Animales , Núcleo Arqueado del Hipotálamo/química , Núcleo Arqueado del Hipotálamo/fisiología , Neuronas Dopaminérgicas/química , Retroalimentación Fisiológica/fisiología , Femenino , Homeostasis/fisiología , Hipotálamo/citología , Inyecciones Intraventriculares , Prolactina/administración & dosificación , Ratas , Ratas Sprague-Dawley
11.
Reproduction ; 142(6): 855-67, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21976617

RESUMEN

X-linked inhibitor of apoptosis protein (XIAP) interacts with caspases to inhibit their activity, thereby providing a potential mechanism for regulation of granulosa cell apoptosis occurring during follicular atresia. The aim of this study was to determine the presence and localization of XIAP mRNA and protein content in the sheep ovary and compare these expression patterns with active caspase-3 protein in the same antral follicles. Romney ewe estrous cycles (n=25) were synchronized with 2-3 Estrumate injections and ovarian tissue collected during the luteal and follicular phases of the cycle. The presence of XIAP mRNA was confirmed by RT-PCR using laser capture microdissected ovarian cell samples. XIAP mRNA was subsequently localized by in situ hybridization histochemistry and XIAP and active caspase-3 protein visualized by immunohistochemistry. In antral follicles extensive XIAP localization was evident in both granulosa and thecal cells. In contrast, mRNA expression was widespread in granulosa cells and only detected in thecal tissue from a small proportion of antral follicles. Active caspase-3 and XIAP comparative expression analysis showed positive XIAP mRNA expression in all late luteal phase (day 14) follicles, despite varying levels of active caspase-3 protein. A proportion of follicular phase (days 15 and 16) follicles, however, showed an inverse expression relationship at the protein and mRNA levels in both granulosa and thecal tissue, as did XIAP protein in day 14 follicles. These results suggest high XIAP may prevent activation of caspase-3, thereby regulating follicular atresia in antral follicles and could potentially be utilized as a marker of follicular health.


Asunto(s)
Apoptosis , Caspasa 3/metabolismo , Folículo Ovárico/metabolismo , Ovinos/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Animales , Femenino , Inmunohistoquímica , Hibridación in Situ , Sondas ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
Endocrinology ; 152(2): 526-35, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21177834

RESUMEN

High levels of circulating prolactin are known to cause infertility, but the precise mechanisms by which prolactin influences the neuroendocrine axis are yet to be determined. We used dual-label in situ hybridization to investigate whether prolactin-receptor (PRLR) mRNA is expressed in GnRH neurons. In addition, because γ-aminobutyric acidergic and kisspeptin neurons in the rostral hypothalamus are known to regulate GnRH neurons and, hence, might mediate the actions of prolactin, we investigated whether these neurons coexpress PRLR mRNA. (35)S-labeled RNA probes to detect PRLR mRNA were hybridized together with digoxigenin-labeled probes to detect either GnRH, Gad1/Gad2, or Kiss1 mRNA in the rostral hypothalamus of ovariectomized (OVX), estradiol-treated rats. Additional sets of serial sections were cut through the arcuate nucleus of OVX rats, without estradiol replacement, to examine coexpression of PRLR mRNA in the arcuate population of kisspeptin neurons. PRLR mRNA was highly expressed throughout the rostral preoptic area, particularly in periventricular regions surrounding the third ventricle, and there was a high degree of colocalization of PRLR mRNA in both Gad1/Gad2 and Kiss1 mRNA-containing cells (86 and 85.5%, respectively). In contrast, only a small number of GnRH neurons (<5%) was found to coexpress PRLR mRNA. In the arcuate nucleus of OVX rats, the majority of Kiss1 mRNA-containing cells also coexpressed PRLR mRNA. These data are consistent with the hypothesis that, in addition to a direct action on a small subpopulation of GnRH neurons, prolactin actions on GnRH neurons are predominantly mediated indirectly, through known afferent pathways.


Asunto(s)
Fertilidad/fisiología , Hipotálamo/citología , Hipotálamo/metabolismo , Neuronas/metabolismo , Proteínas/metabolismo , Receptores de Prolactina/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Femenino , Fertilidad/genética , Glutamato Descarboxilasa/genética , Hibridación in Situ , Kisspeptinas , Ovariectomía , Proteínas/genética , Ratas , Ratas Sprague-Dawley , Receptores de Prolactina/genética
13.
J Comp Neurol ; 518(1): 92-102, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19882722

RESUMEN

Prolactin has numerous biological actions in the brain, and transgenic mice are increasingly being used to investigate these actions. The present study aimed to provide a detailed mapping of the prolactin-responsive neurons in the female mouse forebrain by describing the distribution of prolactin receptor mRNA by in situ hybridization, and measuring prolactin-induced phosphorylation of signal transducer and activation of transcription 5 (pSTAT5) by immunohistochemistry. For in situ hybridization, a probe designed to detect both long and short receptor isoforms showed mRNA expression in a heterogeneous manner within the forebrain. Strong expression was observed in the rostral hypothalamus, particularly in periventricular regions, as well as in the arcuate and ventromedial nuclei of the mediobasal hypothalamus. There was also significant expression in some nonhypothalamic regions, notably high expression in the choroid plexus, and lower levels of expression in the medial amygdala, bed nucleus of the stria terminalis, and lateral septum. Prolactin-induced pSTAT5, detected by immunohistochemistry, provided a functional index of prolactin receptor activation in neurons. Prolactin-induced pSTAT5 was only observed in areas containing prolactin receptor mRNA, and was particularly prominent in the rostral and mediobasal hypothalamus. Most other areas that contained prolactin receptor mRNA also showed positive signal for prolactin-induced pSTAT5. The major exceptions were paraventricular nucleus and median preoptic nucleus, in which prolactin receptor mRNA was observed, but no induction of pSTAT5 by prolactin. The data provide key neuroanatomical information facilitating the use of the mouse model for furthering our understanding of prolactin actions in the brain.


Asunto(s)
Neuronas/metabolismo , Prolactina/sangre , Prosencéfalo/anatomía & histología , Animales , Femenino , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Fosforilación , Prosencéfalo/metabolismo , Receptores de Prolactina/genética , Receptores de Prolactina/metabolismo , Factor de Transcripción STAT5/metabolismo , Ovinos
14.
J Neuroendocrinol ; 20(4): 497-507, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18266946

RESUMEN

During pregnancy, neuroendocrine control of prolactin secretion is markedly altered to allow a state of hyperprolactinaemia to develop. Prolactin secretion is normally tightly regulated by a short-loop negative-feedback mechanism, whereby prolactin stimulates activity of tuberoinfundibular dopamine (TIDA) neurones to increase dopamine secretion into the pituitary portal blood. Dopamine inhibits prolactin secretion, thus reducing prolactin concentrations in the circulation back to the normal low level. Activation of this feedback secretion by placental lactogen during pregnancy maintains relatively low levels of prolactin secretion during early and mid-pregnancy. Despite the continued presence of placental lactogen, however, dopamine secretion from TIDA neurones is reduced during late pregnancy. Moreover, the neurones become completely unresponsive to endogenous or exogenous prolactin at this time, allowing a large nocturnal surge of prolactin to occur from the maternal pituitary gland during the night before parturition. In this review, we describe the changing patterns of prolactin secretion during pregnancy in the rat, and discuss the neuroendocrine mechanisms controlling these changes. The loss of response to prolactin is an important maternal adaptation to pregnancy, allowing the prolonged period of hyperprolactinaemia required for mammary gland development and function and for maternal behaviour immediately after parturition, and possibly also contributing to a range of other adaptive responses in the mother.


Asunto(s)
Adaptación Fisiológica , Sistemas Neurosecretores/fisiología , Embarazo/fisiología , Prolactina/metabolismo , Adaptación Fisiológica/fisiología , Analgésicos Opioides/metabolismo , Animales , Dopamina/metabolismo , Retroalimentación Fisiológica/fisiología , Femenino , Hormonas Esteroides Gonadales/fisiología , Humanos , Lactancia/metabolismo , Lactancia/fisiología , Modelos Biológicos , Neuronas/metabolismo , Neuronas/fisiología , Embarazo/metabolismo , Receptores de Prolactina/fisiología
15.
Horm Behav ; 53(4): 509-17, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18258236

RESUMEN

Prolactin is required for rapid onset of maternal behavior after parturition, inducing adaptive changes in the maternal brain including enhanced neurogenesis in the subventricular zone during pregnancy. The resultant increase in olfactory interneurons may be required for altered processing of olfactory cues during the establishment of maternal behavior. Pheromones act through olfactory pathways to exert powerful effects on behavior in rodents and also affect prolactin secretion. Hence, this study aimed to investigate the effect of male pheromones on neurogenesis and maternal behavior in female mice. Virgin female mice were housed individually or in split-cages where they had pheromonal but not physical contact with a male. Maternal behavior was assessed in a foster pup retrieval paradigm. Some mice were injected with bromodeoxyuridine, and the labeled cells visualized using immunohistochemistry. The data show that exposure to male pheromones, for a duration equivalent to a murine pregnancy, advanced maternal behavior in both virgin and postpartum female mice. The pheromone action was dependent on prolactin and ovarian steroids, and was associated with increased cell proliferation in the subventricular zone and subsequent increases in new neurons in the olfactory bulb. Moreover, the effect of pheromones on both cell proliferation and maternal behavior could be induced solely through administration of exogenous prolactin to mimic the pheromone-induced changes in prolactin secretion. The data suggest that male pheromones induce a prolactin-mediated increase in neurogenesis in female mice, resulting in advanced maternal behavior.


Asunto(s)
Conducta Materna/fisiología , Plasticidad Neuronal/fisiología , Feromonas/fisiología , Prolactina/sangre , Olfato/fisiología , Análisis de Varianza , Comunicación Animal , Animales , Diferenciación Celular/fisiología , Femenino , Hormonas Esteroides Gonadales/fisiología , Masculino , Ratones , Neuronas/citología , Neuronas/fisiología , Vías Olfatorias/citología , Vías Olfatorias/fisiología , Células Madre/citología , Células Madre/fisiología , Factores de Tiempo
16.
Artículo en Inglés | MEDLINE | ID: mdl-17063341

RESUMEN

This study examines the relationship between cyclical variations in optic-lobe dopamine levels and the circadian behavioural rhythmicity exhibited by forager bees. Our results show that changing the light-dark regimen to which bees are exposed has a significant impact not only on forager behaviour, but also on the levels of dopamine that can be detected in the optic lobes of the brain. Consistent with earlier reports, we show that foraging behaviour exhibits properties characteristic of a circadian rhythm. Foraging activity is entrained by daily light cycles to periods close to 24 h, it changes predictably in response to phase shifts in light, and it is able to free-run under constant conditions. Dopamine levels in the optic lobes also undergo cyclical variations, and fluctuations in endogenous dopamine levels are influenced significantly by alterations to the light/dark cycle. However, the time course of these changes is markedly different from changes observed at a behavioural level. No direct correlation could be identified between levels of dopamine in the optic lobes and circadian rhythmic activity of the honey bee.


Asunto(s)
Abejas/fisiología , Ritmo Circadiano/fisiología , Dopamina/metabolismo , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Fotoperiodo , Animales , Relojes Biológicos/fisiología , Dopamina/efectos de la radiación , Femenino , Ganglios de Invertebrados/metabolismo , Luz , Lóbulo Óptico de Animales no Mamíferos/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...