Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 92020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32657271

RESUMEN

A polarized arrangement of neuronal microtubule arrays is the foundation of membrane trafficking and subcellular compartmentalization. Conserved among both invertebrates and vertebrates, axons contain exclusively 'plus-end-out' microtubules while dendrites contain a high percentage of 'minus-end-out' microtubules, the origins of which have been a mystery. Here we show that in Caenorhabditis elegans the dendritic growth cone contains a non-centrosomal microtubule organizing center (MTOC), which generates minus-end-out microtubules along outgrowing dendrites and plus-end-out microtubules in the growth cone. RAB-11-positive endosomes accumulate in this region and co-migrate with the microtubule nucleation complex γ-TuRC. The MTOC tracks the extending growth cone by kinesin-1/UNC-116-mediated endosome movements on distal plus-end-out microtubules and dynein clusters this advancing MTOC. Critically, perturbation of the function or localization of the MTOC causes reversed microtubule polarity in dendrites. These findings unveil the endosome-localized dendritic MTOC as a critical organelle for establishing axon-dendrite polarity.


Asunto(s)
Caenorhabditis elegans/crecimiento & desarrollo , Dendritas/metabolismo , Conos de Crecimiento/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Microtúbulos/metabolismo , Animales , Caenorhabditis elegans/metabolismo
2.
PLoS One ; 10(10): e0139153, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26426122

RESUMEN

Chlamydia trachomatis manipulates host cellular pathways to ensure its proliferation and survival. Translocation of host materials into the pathogenic vacuole (termed 'inclusion') may facilitate nutrient acquisition and various organelles have been observed within the inclusion, including lipid droplets, peroxisomes, multivesicular body components, and membranes of the endoplasmic reticulum (ER). However, few of these processes have been documented in living cells. Here, we survey the localization of a broad panel of subcellular elements and find ER, mitochondria, and inclusion membranes within the inclusion lumen of fixed cells. However, we see little evidence of intraluminal localization of these organelles in live inclusions. Using time-lapse video microscopy we document ER marker translocation into the inclusion lumen during chemical fixation. These intra-inclusion ER elements resist a variety of post-fixation manipulations and are detectable via immunofluorescence microscopy. We speculate that the localization of a subset of organelles may be exaggerated during fixation. Finally, we find similar structures within the pathogenic vacuole of Coxiella burnetti infected cells, suggesting that fixation-induced translocation of cellular materials may occur into the vacuole of a range of intracellular pathogens.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chlamydia trachomatis/metabolismo , Retículo Endoplásmico/metabolismo , Cuerpos de Inclusión/metabolismo , Cuerpos Multivesiculares/metabolismo , Fijación del Tejido/métodos , Vacuolas/metabolismo , Animales , Transporte Biológico , Chlamydia trachomatis/ultraestructura , Retículo Endoplásmico/ultraestructura , Células HeLa , Humanos , Cuerpos de Inclusión/ultraestructura , Proteínas de la Membrana/metabolismo , Cuerpos Multivesiculares/ultraestructura , Imagen de Lapso de Tiempo , Vacuolas/ultraestructura
3.
Cell Host Microbe ; 17(5): 716-25, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25920978

RESUMEN

Gene inactivation by transposon insertion or allelic exchange is a powerful approach to probe gene function. Unfortunately, many microbes, including Chlamydia, are not amenable to routine molecular genetic manipulations. Here we describe an arrayed library of chemically induced mutants of the genetically intransigent pathogen Chlamydia trachomatis, in which all mutations have been identified by whole-genome sequencing, providing a platform for reverse genetic applications. An analysis of possible loss-of-function mutations in the collection uncovered plasticity in the central metabolic properties of this obligate intracellular pathogen. We also describe the use of the library in a forward genetic screen that identified InaC as a bacterial factor that binds host ARF and 14-3-3 proteins and modulates F-actin assembly and Golgi redistribution around the pathogenic vacuole. This work provides a robust platform for reverse and forward genetic approaches in Chlamydia and should serve as a valuable resource to the community.


Asunto(s)
Chlamydia trachomatis/genética , Genética Microbiana/métodos , Genoma Bacteriano , Biología Molecular/métodos , Mutagénesis , Mutación , Genética Inversa/métodos , Marcadores Genéticos , Pruebas Genéticas , Análisis de Secuencia de ADN
4.
Pathog Dis ; 71(3): 336-51, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24838663

RESUMEN

The secreted Chlamydia protease CPAF cleaves a defined set of mammalian and Chlamydia proteins in vitro. As a result, this protease has been proposed to modulate a range of bacterial and host cellular functions. However, it has recently come into question the extent to which many of its identified substrates constitute bona fide targets of proteolysis in infected host cell rather than artifacts of postlysis degradation. Here, we clarify the role played by CPAF in cellular models of infection by analyzing Chlamydia trachomatis mutants deficient for CPAF activity. Using reverse genetic approaches, we identified two C. trachomatis strains possessing nonsense, loss-of-function mutations in cpa (CT858) and a third strain containing a mutation in type II secretion (T2S) machinery that inhibited CPAF activity by blocking zymogen secretion and subsequent proteolytic maturation into the active hydrolase. HeLa cells infected with T2S(-) or CPAF(-) C. trachomatis mutants lacked detectable in vitro CPAF proteolytic activity and were not defective for cellular traits that have been previously attributed to CPAF activity, including resistance to staurosporine-induced apoptosis, Golgi fragmentation, altered NFκB-dependent gene expression, and resistance to reinfection. However, CPAF-deficient mutants did display impaired generation of infectious elementary bodies (EBs), indicating an important role for this protease in the full replicative potential of C. trachomatis. In addition, we provide compelling evidence in live cells that CPAF-mediated protein processing of at least two host protein targets, vimentin filaments and the nuclear envelope protein lamin-associated protein-1 (LAP1), occurs rapidly after the loss of the inclusion membrane integrity, but before loss of plasma membrane permeability and cell lysis. CPAF-dependent processing of host proteins correlates with a loss of inclusion membrane integrity, and so we propose that CPAF plays a role late in infection, possibly during the stages leading to the dismantling of the infected cell prior to the release of EBs during cell lysis.


Asunto(s)
Chlamydia trachomatis/enzimología , Interacciones Huésped-Patógeno , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Chlamydia trachomatis/genética , Chlorocebus aethiops , Células Epiteliales/microbiología , Células HeLa , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Péptido Hidrolasas/deficiencia , Procesamiento Proteico-Postraduccional , Proteolisis , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA