Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 626(8001): 975-978, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38418911

RESUMEN

The identification of sources driving cosmic reionization, a major phase transition from neutral hydrogen to ionized plasma around 600-800 Myr after the Big Bang1-3, has been a matter of debate4. Some models suggest that high ionizing emissivity and escape fractions (fesc) from quasars support their role in driving cosmic reionization5,6. Others propose that the high fesc values from bright galaxies generate sufficient ionizing radiation to drive this process7. Finally, a few studies suggest that the number density of faint galaxies, when combined with a stellar-mass-dependent model of ionizing efficiency and fesc, can effectively dominate cosmic reionization8,9. However, so far, comprehensive spectroscopic studies of low-mass galaxies have not been done because of their extreme faintness. Here we report an analysis of eight ultra-faint galaxies (in a very small field) during the epoch of reionization with absolute magnitudes between MUV ≈ -17 mag and -15 mag (down to 0.005L⋆ (refs. 10,11)). We find that faint galaxies during the first thousand million years of the Universe produce ionizing photons with log[ξion (Hz erg-1)] = 25.80 ± 0.14, a factor of 4 higher than commonly assumed values12. If this field is representative of the large-scale distribution of faint galaxies, the rate of ionizing photons exceeds that needed for reionization, even for escape fractions of the order of 5%.

2.
Nature ; 628(8006): 57-61, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38354833

RESUMEN

Early JWST observations have uncovered a population of red sources that might represent a previously overlooked phase of supermassive black hole growth1-3. One of the most intriguing examples is an extremely red, point-like object that was found to be triply imaged by the strong lensing cluster Abell 2744 (ref. 4). Here we present deep JWST/NIRSpec observations of this object, Abell2744-QSO1. The spectroscopy confirms that the three images are of the same object, and that it is a highly reddened (AV ≃ 3) broad emission line active galactic nucleus at a redshift of zspec = 7.0451 ± 0.0005. From the width of Hß (full width at half-maximum = 2,800 ± 250 km s-1), we derive a black hole mass of M BH = 4 - 1 + 2 × 1 0 7 M ⊙ . We infer a very high ratio of black-hole-to-galaxy mass of at least 3%, an order of magnitude more than that seen in local galaxies5 and possibly as high as 100%. The lack of strong metal lines in the spectrum together with the high bolometric luminosity (Lbol = (1.1 ± 0.3) × 1045 erg s-1) indicate that we are seeing the black hole in a phase of rapid growth, accreting at 30% of the Eddington limit. The rapid growth and high black-hole-to-galaxy mass ratio of Abell2744-QSO1 suggest that it may represent the missing link between black hole seeds6 and one of the first luminous quasars7.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...