Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(23): 20569-20578, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37323389

RESUMEN

As evidenced by UV-Vis and EPR spectroscopies, the reaction of H2IrCl6·6H2O or Na2[IrCl6]·nH2O with DMSO results in a slow reduction of Ir(IV) avoiding the formation of Ir(IV) dimethyl sulfoxide complexes in measurable quantities. More specifically, we successfully isolated and solved the crystal structure of a sodium hexachloridoiridate(III), Na3[IrCl6]·2H2O, as a product of Na2[IrCl6]·nH2O reduction in an acetone solution. Furthermore, it was shown that [IrCl5(Me2CO)]- species is gradually formed in an acetone solution of H2IrCl6·6H2O upon storage. The reaction of DMSO with aged acetone solution of H2IrCl6·6H2O dominated by [IrCl5(Me2CO)]- affords a novel iridium(IV) chloride-dimethyl sulfoxide salt [H(dmso)2][IrCl5(dmso-κO)] (1). The compound was characterized by various spectroscopies (IR, EPR, UV-Vis) and X-ray diffraction techniques applied both to single-crystal and polycrystalline powder. The DMSO ligand is coordinated to the iridium site via the oxygen atom. New polymorph modifications of known iridium(III) complexes [H(dmso)2][trans-IrCl4(dmso-κS)2] and [H(dmso)][trans-IrCl4(dmso-κS)2] were isolated and structurally elucidated as byproducts of the above reaction.

2.
ACS Omega ; 8(9): 8276-8284, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36910956

RESUMEN

Use of coantioxidant systems is a prospective way to increase the effectiveness of antioxidant species in tissue repair and regeneration. In this paper, we introduce a novel scheme of a reactive oxygen species (ROS) trap and neutralization during self-assembly of supramolecular melamine barbiturate material. The performed reaction chain mimics the biological process of ROS generation in key stages and enables one to obtain stable hydroperoxyl and organic radicals in a melamine barbiturate structure. Melamine barbiturate also neutralizes hydroxyl radicals, and the effectiveness of the radical trap is controlled with ROS scavenger incorporation. The number of radicals dramatically increases during light-inducing and depends on pH. The proposed scheme of the ROS trap and neutralization opens a way to the use of supramolecular assemblies as a component of coantioxidant systems and a source of organic radicals.

3.
Phys Chem Chem Phys ; 25(4): 3136-3143, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36621838

RESUMEN

The molecular mobility of acetonitrile intercalated into the inter-plane space of graphite oxide was studied using the spin probe technique. It was revealed that two types of intercalated substance - liquid-like and solid-like - are simultaneously present in between the oxidized graphene planes, and their ratio depends on temperature. The micro-viscosity of liquid-like intercalated acetonitrile was found to be higher than that of bulk acetonitrile and depends on the amount of intercalated liquid.

4.
Membranes (Basel) ; 12(12)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36557148

RESUMEN

Spin probe EPR spectroscopy is currently the only method to quantitatively report on the orientational ordering of graphene oxide membranes. This technique is based on the analysis of EPR spectra of a membrane containing stable radicals sorbed on oxidized graphene planes. The efficiency of the method depends on the spin probe structure; therefore, it is important to find stable paramagnetic substances that are most sensitive to the alignment of graphene oxide membranes. In the present work, three novel stable nitroxide radicals containing aromatic fragments with two nitrogen atoms were tested as spin probes to study graphene oxide membranes. The spin-Hamiltonian parameters of the radicals in graphite oxide powder and orientational order parameters of the probes inside graphene oxide membrane were determined. The sensitivity of one of these radicals to membrane orientational ordering was found to be higher than for any of spin probes used previously. A likely reason for this higher sensitivity is the presence of heteroatoms which can facilitate interaction between paramagnetic molecules and oxygen-containing groups on the inner surface of the membrane. The new high-sensitivity spin probe may significantly increase the potential of EPR spectroscopy for studying the internal structure of graphene oxide membranes.

5.
Polymers (Basel) ; 13(21)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34771385

RESUMEN

Coil to globule transition in poly(N-isopropylacrylamide) aqueous solutions was studied using spin probe continuous-wave electronic paramagnetic resonance (CW EPR) spectroscopy with an amphiphilic TEMPO radical as a guest molecule. Using Cu(II) ions as the "quencher" for fast-moving radicals in the liquid phase allowed obtaining the individual spectra of TEMPO radicals in polymer globule and observing inhomogeneities in solutions before globule collapsing. EPR spectra simulations confirm the formation of molten globules at the first step with further collapsing and water molecules coming out of the globule, making it denser.

6.
Chemistry ; 26(70): 16603-16610, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32770588

RESUMEN

In the last two decades, a large number of self-assembled materials were synthesized and they have already found their way into large-scale industry and science. Hydrogen-bond-based supramolecular adducts are found to have unique properties and to be perfect host structures for trapping target molecules or ions. Such chemical systems are believed to resemble living matter and can substitute a living cell in a number of cases. Herein, a report on an organic material based on supramolecular assembly of barbituric acid and melamine is presented. Surprisingly, the structure is found to host and stabilize radicals under mild conditions allowing its use for biological applications. The number of free radicals is found to be easily tuned by changing the pH of the environment and it increases when exposed to light up to a saturation level. We describe a preparation method as well as stability properties of melamine-barbiturate self-assembly, potentiometric titration, and hydrogen ions adsorption data and EPR spectra concerning the composite.

7.
ACS Omega ; 4(6): 10929-10938, 2019 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-31460191

RESUMEN

Manipulating the atomic structure of semiconductors is a fine way to tune their properties. The rationalization of their modified properties is, however, particularly challenging as defects locally disrupt the long-range structural ordering, and a deeper effort is required to fully describe their structure. In this work, we investigated the photoelectrochemical properties of an anatase-type structure featuring a high content of titanium vacancies stabilized by dual-oxide substitution by fluoride and hydroxide anions. Such atomic modification induces a slight red-shift band gap energy of 0.08 eV as compared to pure TiO2, which was assigned to changes in titanium-anion ionocovalent bonding. Under illumination, electron paramagnetic resonance spectroscopy revealed the formation of TiIII and O2 - radicals which were not detected in defect-free TiO2. Consequently, the modified anatase shows higher ability to oxidize water with lower electron-hole recombination rate. To further increase the photoelectrochemical properties, we subsequently modified the compound by a surface functionalization with N-methyl-2-pyrrolidone (NMP). This treatment further modifies the chemical composition, which results in a red shift of the band gap energy to 3.03 eV. Moreover, the interaction of the NMP electron-donating molecules with the surface induces an absorption band in the visible region with an estimated band gap energy of 2.25-2.50 eV. Under illumination, the resulting core-shell structure produces a high concentration of reduced TiIII and O2 -, suggesting an effective charge carrier separation which is confirmed by high photoelectrochemical properties. This work provides new opportunities to better understand the structural features that affect the photogenerated charge carriers.

8.
J Phys Chem A ; 122(2): 574-581, 2018 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-29266949

RESUMEN

A biradical consisting of two nitronyl nitroxide (NN) radicals bridged by diphenyl-hexaethylene glycol chain [phenyl-O-(CH2CH2O)6-phenyl (GBN1)] was synthesized and investigated using electron paramagnetic resonance (EPR) spectroscopy in solution at different temperature ranges. The reversible temperature dependence behavior of spin coupling exchange is comprehensively reflected by the different lifetime of conformations due to a tumbling motion of the flexible hexaethylene glycol chain. The influences of different solvent on the exchange interactions between the radical entities are described by a two-conformational model, which was, for the first time, applied for di-NN molecule and revealed the thermodynamic parameters enthalpy and entropy (ΔH and ΔS) of the conformational changes. The positive value of enthalpy indicates lower energy of the stretched form (as calculated) compared to the bent form. The transition enthalpy in polar MeCN is larger than in toluene and the positive entropy sign indicates more chain conformation options in the bent state. The magnetic properties of this molecule were investigated in solid state by magnetization studies and EPR spectroscopy.

9.
J Phys Chem B ; 116(40): 12295-305, 2012 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-22928518

RESUMEN

We have studied the rotational and translational diffusion of the spin probe 4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPOL) in five imidazolium-based room-temperature ionic liquids (RTILs) and glycerol by means of X-band electron paramagnetic resonance (EPR) spectroscopy. Rotational correlation times and rate constants of intermolecular spin exchange have been determined by analysis of the EPR line shape at various temperatures and spin probe concentrations. The model of isotropic rotational diffusion cannot account for all spectral features of TEMPOL in all RTILs. In highly viscous RTILs, the rotational mobility of TEMPOL differs for different molecular axes. The translational diffusion coefficients have been calculated from spin exchange rate constants. To this end, line shape contributions stemming from Heisenberg exchange and from the electron-electron dipolar interaction have been separated based on their distinct temperature dependences. While the Debye-Stokes-Einstein law is found to apply for the rotational correlation times in all solvents studied, the dependence of the translational diffusion coefficients on the Stokes parameter T/η is nonlinear; i.e., deviations from the Stokes-Einstein law are observed. The effective activation energies of rotational diffusion are significantly larger than the corresponding values for translational motion. Effects of the identity of the RTIL cations and anions on the activation energies are discussed.


Asunto(s)
Óxidos N-Cíclicos/química , Líquidos Iónicos/química , Temperatura , Difusión , Rotación , Marcadores de Spin
10.
J Phys Chem A ; 113(38): 10219-23, 2009 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-19685912

RESUMEN

Transformations of anionic Cu(II) chlorocomplexes have been studied under conditions of catalytic exchange reactions between carbon tetrachloride and n-alkanes. It was shown that chlorocuprates are just precursors and are easily reduced to the genuine catalysts, that is, to the respective Cu(I) complexes. Both the composition and the geometric structure of the precursor (CuCl(4)(2-)) and, probably, the active site (CuCl(3)(2-)) have been investigated by several techniques (UV-vis spectroscopy, electron spin resonance (ESR), extended X-ray absorption fine structure (EXAFS), X-ray absorption near-edge structure (XANES), and static magnetic measurements). The dependence of the metathesis velocity on the [Cl-]/[Cu] ratio was found to exhibit a maximum most likely corresponding to the highest content of trichlorocuprite CuCl(3)(2-).

11.
Chirality ; 18(4): 232-8, 2006 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-16521085

RESUMEN

Noticeable differences between solid-state ESR spectra of enantiopure and racemic single crystals as well as powders of 2,2,5,5-tetramethylpyrrolidine-3-carboxamide-1-oxyl have been observed. Possible reasons of this fact are proposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...