Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chempluschem ; : e202400019, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712501

RESUMEN

In recent years, halogen-bonded complexes (XBCs), in solution, have played a pivotal role in inducing photochemical organic reactions. In this work, we explore the ability of various tertiary amines to act as XB acceptors in the presence of the XB donor CBr4 by computational and spectroscopic studies. DFT studies clearly showcase the formation of XBCs between the studied tertiary amines and CBr4. Simultaneously, computational and experimental UV-Vis studies display intense red shifts that are consistent with charge transfer observed from tertiary amines to CBr4. A detailed NMR study revealed a clear chemical shift of the carbon carrying the bromine atoms upon mixing the XB acceptor with the donor, suggesting that this spectroscopic technique is indeed an experimental tool to identify the generation of XBCs. An application of the ability of such XBCs to activate a carboxylic acid under UVA irradiation or sunlight is presented for amino acid coupling. Among the various tertiary amines studied, the pair DABCO-CBr4 was found to work well for the photochemical amide bond formation. Direct infusion-HRMS studies allowed us to propose a general mechanism for the photochemical amino acid coupling in the presence of a tertiary amine and CBr4, initiated by the photoactivation of an XBC.

2.
Biomolecules ; 14(1)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38254710

RESUMEN

Hydroxy fatty acids (HFAs) constitute a class of lipids, distinguished by the presence of a hydroxyl on a long aliphatic chain. This study aims to expand our insights into HFA bioactivities, while also introducing new methods for asymmetrically synthesizing unsaturated and saturated HFAs. Simultaneously, a procedure previously established by us was adapted to generate new HFA regioisomers. An organocatalytic step was employed for the synthesis of chiral terminal epoxides, which either by alkynylation or by Grignard reagents resulted in unsaturated or saturated chiral secondary alcohols and, ultimately, HFAs. 7-(S)-Hydroxyoleic acid (7SHOA), 7-(S)-hydroxypalmitoleic acid (7SHPOA) and 7-(R)- and (S)-hydroxymargaric acids (7HMAs) were synthesized for the first time and, together with regioisomers of (R)- and (S)-hydroxypalmitic acids (HPAs) and hydroxystearic acids (HSAs), whose biological activity has not been tested so far, were studied for their antiproliferative activities. The unsaturation of the long chain, as well as an odd-numbered (C17) fatty acid chain, led to reduced activity, while the new 6-(S)-HPA regioisomer was identified as exhibiting potent antiproliferative activity in A549 cells. 6SHPA induced acetylation of histone 3 in A549 cells, without affecting acetylated α-tubulin levels, suggesting the selective inhibition of histone deacetylase (HDAC) class I enzymes, and was found to inhibit signal transducer and activator of transcription 3 (STAT3) expression.


Asunto(s)
Ácidos Grasos Insaturados , Ácidos Grasos , Humanos , Ácidos Grasos Insaturados/farmacología , Ácidos Grasos/farmacología , Células A549 , Acetilación , Fenómenos Químicos
3.
J Med Chem ; 66(20): 14357-14376, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37795958

RESUMEN

Inhibitors of histone deacetylases (HDACs) have received special attention as novel anticancer agents. Among various types of synthetic inhibitors, benzamides constitute an important class, and one is an approved drug (chidamide). Here, we present a novel class of HDAC inhibitors containing the N-(2-aminophenyl)-benzamide functionality as the zinc-binding group linked to various cap groups, including the amino acids pyroglutamic acid and proline. We have identified benzamides that inhibit HADC1 and HDAC2 at nanomolar concentrations, with antiproliferative activity at micromolar concentrations against A549 and SF268 cancer cell lines. Docking studies shed light on the mode of binding of benzamide inhibitors to HDAC1, whereas cellular analysis revealed downregulated expression of EGFR mRNA and protein. Two benzamides were investigated in a mouse model of bleomycin-induced pulmonary fibrosis, and both showed efficacy on a preventative dosing schedule. N-(2-Aminophenyl)-benzamide inhibitors of class I HDACs might lead to new approaches for treating fibrotic disorders.


Asunto(s)
Antineoplásicos , Inhibidores de Histona Desacetilasas , Ratones , Animales , Línea Celular , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Inhibidores de Histona Desacetilasas/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Benzamidas/farmacología , Benzamidas/uso terapéutico , Benzamidas/química , Línea Celular Tumoral
4.
Chemistry ; 29(35): e202300556, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37015030

RESUMEN

The direct amide bond formation between a carboxylic acid and an amine still constitutes a challenging reaction for both academia and industry. We demonstrate herein that several pairs of amines (halogen bond acceptors) and organohalogen sources may be used for the photochemical amidation reaction under either UVA or sunlight irradiation. Our studies led to the identification of pyridine-CBr4 as an efficient agent to perform amide synthesis under LED 370 nm irradiation, avoiding super-stoichiometric quantities. An extended substrate scope was demonstrated, showing that the widely used amino and carboxyl protecting groups are compatible with this photochemical protocol, while a number of industrially interesting products and bioactive compounds were synthesized. Direct infusion-high resolution mass spectrometry studies suggest an unprecedented type of carboxylic acid activation mode upon irradiation, involving the generation of a symmetric anhydride, an active ester with pyridine N-oxide and a mixed anhydride with hypobromous acid.


Asunto(s)
Aminas , Ácidos Carboxílicos , Ácidos Carboxílicos/química , Amidas/química , Piridinas , Anhídridos
5.
Food Res Int ; 160: 111751, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36076472

RESUMEN

Yogurt is a fermented dairy product of high nutritional value, very popular in many parts of the world. Free fatty acids (FFAs), which are formed during fermentation, may cause changes in organoleptic properties of yogurt, and thus, the determination of FFAs is of importance. We present a liquid chromatography-high resolution mass spectrometry (LC-HRMS) method, which allows the simultaneous determination of a large set of common and uncommon FFAs in yogurt samples, avoiding any derivatization step. Twenty-five common saturated and unsaturated FAs, together with 21 saturated hydroxy fatty acids (SHFAs) and 17 saturated oxo fatty acids (SOFAs), were analyzed in 26 cow and 7 sheep Greek yogurt samples. A detailed analysis of bioactive SHFAs and SOFAs was carried out in yogurt samples for the first time. Differences at the concentrations of six common FAs and five oxidized FAs between the cow and sheep samples were observed. Based on these FAs, Principal Component Analysis (PCA) allows the discrimination of cow from sheep yogurt samples.


Asunto(s)
Ácidos Grasos no Esterificados , Yogur , Animales , Bovinos , Cromatografía Liquida , Ácidos Grasos/análisis , Ácidos Grasos no Esterificados/análisis , Femenino , Espectrometría de Masas , Ovinos , Yogur/análisis
6.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-36015109

RESUMEN

The development of novel agents to combat COVID-19 is of high importance. SARS-CoV-2 main protease (Mpro) is a highly attractive target for the development of novel antivirals and a variety of inhibitors have already been developed. Accumulating evidence on the pathobiology of COVID-19 has shown that lipids and lipid metabolizing enzymes are critically involved in the severity of the infection. The purpose of the present study was to identify an inhibitor able to simultaneously inhibit both SARS-CoV-2 Mpro and phospholipase A2 (PLA2), an enzyme which plays a significant role in inflammatory diseases. Evaluating several PLA2 inhibitors, we demonstrate that the previously known potent inhibitor of Group IIA secretory PLA2, GK241, may also weakly inhibit SARS-CoV-2 Mpro. Molecular mechanics docking and molecular dynamics calculations shed light on the interactions between GK241 and SARS-CoV-2 Mpro. 2-Oxoamide GK241 may represent a lead molecular structure for the development of dual PLA2 and SARS-CoV-2 Mpro inhibitors.

7.
Biomedicines ; 10(5)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35625925

RESUMEN

Targeted analytical methods for the determination of free fatty acids (FFAs) in human plasma are of high interest because they may help in identifying biomarkers for diseases and in monitoring the progress of a disease. The determination of FFAs is of particular importance in the case of metabolic disorders because FFAs have been associated with diabetes. We present a liquid chromatography-high resolution mass spectrometry (LC-HRMS) method, which allows the simultaneous determination of 74 FFAs in human plasma. The method is fast (10-min run) and straightforward, avoiding any derivatization step and tedious sample preparation. A total of 35 standard saturated and unsaturated FFAs, as well as 39 oxygenated (either hydroxy or oxo) saturated FFAs, were simultaneously detected and quantified in plasma samples from 29 subjects with type 2 diabetes mellitus (T2D), 14 with type 1 diabetes mellitus (T1D), and 28 healthy subjects. Alterations in the levels of medium-chain FFAs (C6:0 to C10:0) were observed between the control group and T2D and T1D patients.

8.
Biomolecules ; 12(2)2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35204768

RESUMEN

The quest for novel agents to regulate the generation of prostaglandin E2 (PGE2) is of high importance because this eicosanoid is a key player in inflammatory diseases. We synthesized a series of N-acylated and N-alkylated 2-aminobenzothiazoles and related heterocycles (benzoxazoles and benzimidazoles) and evaluated their ability to suppress the cytokine-stimulated generation of PGE2 in rat mesangial cells. 2-Aminobenzothiazoles, either acylated by the 3-(naphthalen-2-yl)propanoyl moiety (GK510) or N-alkylated by a chain carrying a naphthalene (GK543) or a phenyl moiety (GK562) at a distance of three carbon atoms, stand out in inhibiting PGE2 generation, with EC50 values ranging from 118 nM to 177 nM. Both GK510 and GK543 exhibit in vivo anti-inflammatory activity greater than that of indomethacin. Thus, N-acylated or N-alkylated 2-aminobenzothiazoles are novel leads for the regulation of PGE2 formation.


Asunto(s)
Dinoprostona , Indometacina , Animales , Antiinflamatorios/farmacología , Prostaglandinas E , Ratas
9.
Expert Opin Drug Discov ; 17(3): 231-246, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35072549

RESUMEN

INTRODUCTION: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused the devastating pandemic named coronavirus disease 2019 (COVID-19). Unfortunately, the discovery of antiviral agents to combat COVID-19 is still an unmet need. Transmembrane serine protease 2 (TMPRSS2) is an important mediator in viral infection and thus, TMPRRS2 inhibitors may be attractive agents for COVID-19 treatment. AREAS COVERED: This review article discusses the role of TMPRSS2 in SARS-CoV-2 cell entry and summarizes the inhibitors of TMPRSS2 and their potential anti-SARS activity. Two known TMPRSS2 inhibitors, namely camostat and nafamostat, approved drugs for the treatment of pancreatitis, are under clinical trials as potential drugs against COVID-19. EXPERT OPINION: Due to the lack of the crystal structure of TMPRSS2, homology models have been developed to study the interactions of known inhibitors, including repurposed drugs, with the enzyme. However, novel TMPRSS2 inhibitors have been identified through high-throughput screening, and appropriate assays studying their in vitro activity have been set up. The discovery of TMPRSS2's crystal structure will facilitate the rational design of novel inhibitors and in vivo studies and clinical trials will give a clear answer if TMPRSS2 inhibitors could be a new weapon against COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Serina Endopeptidasas , Internalización del Virus , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , Inhibidores de Proteasas/farmacología , SARS-CoV-2 , Serina Endopeptidasas/metabolismo , Internalización del Virus/efectos de los fármacos
10.
Molecules ; 26(24)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34946618

RESUMEN

Unsaturated nitro fatty acids (NO2-FAs) constitute a category of molecules that may be formed endogenously by the reaction of unsaturated fatty acids (UFAs) with secondary species of nitrogen monoxide and nitrite anions. The warhead of NO2-FAs is a nitroalkene moiety, which is a potent Michael acceptor and can undergo nucleophilic attack from thiol groups of biologically relevant proteins, showcasing the value of these molecules regarding their therapeutic potential against many diseases. In general, NO2-FAs inhibit nuclear factorκ-B (NF-κB), and simultaneously they activate nuclear factor (erythroid derived)-like 2 (Nrf2), which activates an antioxidant signaling pathway. NO2-FAs can be synthesized not only endogenously in the organism, but in a synthetic laboratory as well, either by a step-by-step synthesis or by a direct nitration of UFAs. The step-by-step synthesis requires specific precursor compounds and is in position to afford the desired NO2-FAs with a certain position of the nitro group. On the contrary, the direct nitration of UFAs is not a selective methodology; thus, it affords a mixture of all possible nitro isomers.


Asunto(s)
Ácidos Grasos , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Nitrocompuestos , Transducción de Señal , Animales , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Humanos , Nitrocompuestos/química , Nitrocompuestos/metabolismo , Nitrocompuestos/farmacología
11.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34561301

RESUMEN

Nervous system malignancies are characterized by rapid progression and poor survival rates. These clinical observations underscore the need for novel therapeutic insights and pharmacological targets. To this end, here, we identify the orphan nuclear receptor NR5A2/LRH1 as a negative regulator of cancer cell proliferation and promising pharmacological target for nervous system-related tumors. In particular, clinical data from publicly available databases suggest that high expression levels of NR5A2 are associated with favorable prognosis in patients with glioblastoma and neuroblastoma tumors. Consistently, we experimentally show that NR5A2 is sufficient to strongly suppress proliferation of both human and mouse glioblastoma and neuroblastoma cells without inducing apoptosis. Moreover, short hairpin RNA-mediated knockdown of the basal expression levels of NR5A2 in glioblastoma cells promotes their cell cycle progression. The antiproliferative effect of NR5A2 is mediated by the transcriptional induction of negative regulators of the cell cycle, CDKN1A (encoding for p21cip1), CDKN1B (encoding for p27kip1) and Prox1 Interestingly, two well-established agonists of NR5A2, dilauroyl phosphatidylcholine (DLPC) and diundecanoyl phosphatidylcholine, are able to mimic the antiproliferative action of NR5A2 in human glioblastoma cells via the induction of the same critical genes. Most importantly, treatment with DLPC inhibits glioblastoma tumor growth in vivo in heterotopic and orthotopic xenograft mouse models. These data indicate a tumor suppressor role of NR5A2 in the nervous system and render this nuclear receptor a potential pharmacological target for the treatment of nervous tissue-related tumors.


Asunto(s)
Glioblastoma/patología , Neoplasias del Sistema Nervioso/patología , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Ciclo Celular/fisiología , Línea Celular Tumoral , Proliferación Celular , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/mortalidad , Humanos , Estimación de Kaplan-Meier , Ratones SCID , Neoplasias del Sistema Nervioso/tratamiento farmacológico , Neoplasias del Sistema Nervioso/metabolismo , Neoplasias del Sistema Nervioso/mortalidad , Células-Madre Neurales/efectos de los fármacos , Neuroblastoma/metabolismo , Neuroblastoma/patología , Fosfatidilcolinas/farmacología , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/genética , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Bioorg Chem ; 114: 105132, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34229198

RESUMEN

Hydroxamic acid derivatives constitute an interesting novel class of antitumor agents. Three of them, including vorinostat, are approved drugs for the treatment of malignancies, while several others are currently under clinical trials. In this work, we present new vorinostat analogs containing the benzoxazole ring as the cap group and various linkers. The benzoxazole-based analogs were synthesized starting either from 2-aminobenzoxazole, through conventional coupling, or from benzoxazole, through a metal-free oxidative amination. All the synthesized compounds were evaluated for their antiproliferative activity on three diverse human cancer cell lines (A549, Caco-2 and SF268), in comparison to vorinostat. Compound 12 (GK601), carrying a benzoxazole ring replacement for the phenyl ring of vorinostat, was the most potent inhibitor of the growth of three cell lines (IC50 1.2-2.1 µΜ), similar in potency to vorinostat. Compound 12 also inhibited human HDAC1, HDAC2 and HDAC6 like vorinostat. This new analog also showed antiproliferative activity against two colon cancer cell lines genetically resembling pseudomyxoma peritonei (PMP), namely HCT116 GNAS R201C/+ and LS174T (IC50 0.6 and 1.4 µΜ, respectively) with potency comparable to vorinostat (IC50 1.1 and 2.1 µΜ, respectively).


Asunto(s)
Antineoplásicos/farmacología , Benzoxazoles/farmacología , Vorinostat/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Benzoxazoles/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas , Vorinostat/síntesis química , Vorinostat/química
13.
Expert Opin Drug Discov ; 16(11): 1287-1305, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34143707

RESUMEN

AREAS COVERED: This review article summarizes the most important synthetic PLA2 inhibitors developed to target each one of the four major types of human PLA2 (cytosolic cPLA2, calcium-independent iPLA2, secreted sPLA2, and lipoprotein-associated Lp-PLA2), discussing their in vitro and in vivo activities as well as their recent applications and therapeutic properties. Recent findings on the role of PLA2 in the pathobiology of COVID-19 are also discussed. EXPERT OPINION: Although a number of PLA2 inhibitors have entered clinical trials, none has reached the market yet. Lipoprotein-associated PLA2 is now considered a biomarker of vascular inflammation rather than a therapeutic target for inhibitors like darapladib. Inhibitors of cytosolic PLA2 may find topical applications for diseases like atopic dermatitis and psoriasis. Inhibitors of secreted PLA2, varespladib and varespladib methyl, are under investigation for repositioning in snakebite envenoming. A deeper understanding of PLA2 enzymes is needed for the development of novel selective inhibitors. Lipidomic technologies combined with medicinal chemistry approaches may be useful tools toward this goal.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Diseño de Fármacos , Descubrimiento de Drogas , Inflamación/tratamiento farmacológico , Inhibidores de Fosfolipasa A2/uso terapéutico , Humanos , SARS-CoV-2
14.
J Med Chem ; 64(9): 5654-5666, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33881857

RESUMEN

The discovery of novel bioactive lipids that promote human health is of great importance. Combining "suspect" and targeted lipidomic liquid chromatography-high-resolution mass spectrometry (LC-HRMS) approaches, a previously unrecognized class of oxidized fatty acids, the saturated oxo fatty acids (SOFAs), which carry the oxo functionality at various positions of the long chain, was identified in human plasma. A library of SOFAs was constructed, applying a simple green photochemical hydroacylation reaction as the key synthetic step. The synthesized SOFAs were studied for their ability to inhibit in vitro the cell growth of three human cancer cell lines. Four oxostearic acids (OSAs) were identified to inhibit the cell growth of human lung carcinoma A549 cells. 6OSA and 7OSA exhibited the highest cell growth inhibitory potency, suppressing the expression of both STAT3 and c-myc, which are critical regulators of cell growth and proliferation. Thus, naturally occurring SOFAs may play a role in the protection of human health.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Ácidos Grasos/química , Lípidos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Regulación hacia Abajo/efectos de los fármacos , Ácidos Grasos/metabolismo , Ácidos Grasos/farmacología , Humanos , Lípidos/química , Espectrometría de Masas , Oxidación-Reducción , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Ácidos Esteáricos/análisis , Ácidos Esteáricos/metabolismo , Ácidos Esteáricos/farmacología
15.
Biomolecules ; 11(2)2021 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-33668480

RESUMEN

Prostaglandin E2 (PGE2) is a key mediator of inflammation, and consequently huge efforts have been devoted to the development of novel agents able to regulate its formation. In this work, we present the synthesis of various α-ketoheterocycles and a study of their ability to inhibit the formation of PGE2 at a cellular level. A series of α-ketobenzothiazoles, α-ketobenzoxazoles, α-ketobenzimidazoles, and α-keto-1,2,4-oxadiazoles were synthesized and chemically characterized. Evaluation of their ability to suppress the generation of PGE2 in interleukin-1ß plus forskolin-stimulated mesangial cells led to the identification of one α-ketobenzothiazole (GK181) and one α-ketobenzoxazole (GK491), which are able to suppress the PGE2 generation at a nanomolar level.


Asunto(s)
Dinoprostona/antagonistas & inhibidores , Mesangio Glomerular/efectos de los fármacos , Compuestos Heterocíclicos/farmacología , Antagonistas de Prostaglandina/farmacología , Animales , Células Cultivadas , Dinoprostona/biosíntesis , Mesangio Glomerular/citología , Mesangio Glomerular/metabolismo , Simulación del Acoplamiento Molecular , Ratas , Análisis Espectral/métodos
16.
Metabolites ; 11(1)2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33440625

RESUMEN

Oxidized saturated fatty acids, containing a hydroxyl or an oxo functionality, have attracted little attention so far. Recent studies have shown that saturated hydroxy fatty acids, which exhibit cancer cell growth inhibition and may suppress ß-cell apoptosis, are present in milk. Herein, we present the application of a liquid chromatography-high-resolution mass spectrometry (LC-HRMS) method for the detection and quantification of various saturated oxo fatty acids (SOFAs) previously unrecognized in milk. This robust and rapid analytical method, which involves simple sample preparation and a single 10-min run, revealed the presence of families of oxostearic acids (OSAs) and oxopalmitic acids (OPAs) in milk. 8OSA, 9OSA, 7OSA, 10OSA and 10OPA were found to be the most abundant SOFAs in both cow and goat milk. Higher contents of SOFAs were found in cow milk in comparison to goat milk. Together with SOFAs, ricinoleic acid, which is isobaric to OSA, was detected and quantified in all milk samples, following a "suspect" HRMS analysis approach. This unique natural fatty acid, which is the main component (>90%) of castor oil triglycerides, was estimated at mean content values of 534.3 ± 6.0 µg/mL and 460 ± 8.1 µg/mL in cow and goat milk samples, respectively.

17.
J Biomol Struct Dyn ; 39(3): 953-959, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32085688

RESUMEN

During biological events, the water molecules associated with the protein are re-oriented to adapt to the new conditions, inducing changes in the system's free energy. The characterization of water structure and thermodynamics may facilitate the prediction of certain biological events, such as the binding of a ligand and the membrane-associated parts of a protein. In this computational study, we calculated the hydration thermodynamics of cytosolic phospholipase A2 group IV (GIVA cPLA2) to study the hydration properties of the protein's surface and binding pocket. Hydrophobicity scales and the Grid Inhomogeneous Solvation Theory (GIST) tool were employed for the calculations. The hydrophobic areas of the protein's surface were predicted more accurately with the GIST method rather than with the hydrophobicity scales. Based on this, a model of the protein-membrane complex was constructed. In addition, the calculation revealed the highly hydrated binding pocket that further contribute to our understanding of the ligands' binding. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Fosfolipasas , Agua , Sitios de Unión , Ligandos , Termodinámica
18.
J Med Chem ; 63(21): 12666-12681, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33124824

RESUMEN

The field of bioactive lipids is ever expanding with discoveries of novel lipid molecules that promote human health. Adopting a lipidomic-assisted approach, two new families of previously unrecognized saturated hydroxy fatty acids (SHFAs), namely, hydroxystearic and hydroxypalmitic acids, consisting of isomers with the hydroxyl group at different positions, were identified in milk. Among the various regio-isomers synthesized, those carrying the hydroxyl at the 7- and 9-positions presented growth inhibitory activities against various human cancer cell lines, including A549, Caco-2, and SF268 cells. In addition, 7- and 9-hydroxystearic acids were able to suppress ß-cell apoptosis induced by proinflammatory cytokines, increasing the possibility that they can be beneficial in countering autoimmune diseases, such as type 1 diabetes. 7-(R)-Hydroxystearic acid exhibited the highest potency both in cell growth inhibition and in suppressing ß-cell death. We propose that such naturally occurring SHFAs may play a role in the promotion and protection of human health.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ácidos Grasos/farmacología , Animales , Línea Celular , Cromatografía Líquida de Alta Presión , Citocinas/farmacología , Ácidos Grasos/síntesis química , Ácidos Grasos/química , Expresión Génica/efectos de los fármacos , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Leche/química , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Ácidos Esteáricos/farmacología , Estereoisomerismo , Espectrometría de Masas en Tándem
19.
Molecules ; 25(17)2020 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-32872426

RESUMEN

A liquid chromatography-high resolution mass spectrometry (LC-HRMS) method for the direct determination of various saturated hydroxy fatty acids (HFAs) in milk was developed for the first time. The method involves mild sample preparation conditions, avoids time-consuming derivatization procedures, and permits the simultaneous determination of 19 free HFAs in a single 10-min run. This method was validated and applied in 17 cow milk and 12 goat milk samples. This work revealed the existence of various previously unrecognized hydroxylated positional isomers of palmitic acid and stearic acid in both cow and goat milk, expanding our knowledge on the lipidome of milk. The most abundant free HFAs in cow milk were proven to be 7-hydroxystearic acid (7HSA) and 10-hydroxystearic acid (10HSA) (mean content values of 175.1 ± 3.4 µg/mL and 72.4 ± 6.1 µg/mL in fresh milk, respectively). The contents of 7HSA in cow milk seem to be substantially higher than those in goat milk.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Ácidos Grasos/análisis , Leche/química , Animales , Bovinos , Femenino , Cabras , Manejo de Especímenes
20.
Amino Acids ; 52(9): 1337-1351, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32996057

RESUMEN

The corticotropin-releasing factor (CRF) and its CRF1 receptor (CRF1R) play a central role in the maintenance of homeostasis. Malfunctioning of the CRF/CRF1R unit is associated with several disorders, such as anxiety and depression. Non-peptide CRF1R-selective antagonists have been shown to exert anxiolytic and antidepressant effects on experimental animals. However, none of them is in clinical use today because of several side effects, thus demonstrating the need for the development of other more suitable CRF1R antagonists. In an effort to develop novel CRF1R antagonists we designed, synthesized and chemically characterized two tripeptide analogues of CRF, namely (R)-LMI and (S)-LMI, having their Leu either in R (or D) or in S (or L) configuration, respectively. Their design was based on the crystal structure of the N-extracellular domain (N-domain) of CRF1R/CRF complex, using a relevant array of computational methods. Experimental evaluation of the stability of synthetic peptides in human plasma has revealed that (R)-LMI is proteolytically more stable than (S)-LMI. Based on this finding, (R)-LMI was selected for pharmacological characterization. We have found that (R)-LMI is a CRF antagonist, inhibiting (1) the CRF-stimulated accumulation of cAMP in HEK 293 cells expressing the CRF1R, (2) the production of interleukins by adipocytes and (3) the proliferation rate of RAW 264.7 cells. (R)-LMI likely blocked agonist actions by interacting with the N-domain of CRF1R as suggested by data using a constitutively active chimera of CRF1R. We propose that (R)-LMI can be used as an optimal lead compound in the rational design of novel CRF antagonists.


Asunto(s)
AMP Cíclico/metabolismo , Descubrimiento de Drogas , Oligopéptidos/química , Oligopéptidos/farmacología , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Proliferación Celular , Células HEK293 , Humanos , Ratones , Dominios Proteicos , Células RAW 264.7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA