Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 4351, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35896543

RESUMEN

We quantify the criticality of the world's 1300 most important ports for global supply chains by predicting the allocation of trade flows on the global maritime transport network, which we link to a global supply-chain database to evaluate the importance of ports for the economy. We find that 50% of global trade in value terms is maritime, with low-income countries and small islands being 1.5 and 2.0 times more reliant on their ports compared to the global average. The five largest ports globally handle goods that embody >1.4% of global output, while 40 ports add >10% of domestic output of the economies they serve, predominantly small islands. We identify critical cross-border infrastructure dependencies for some landlocked and island countries that rely on specific ports outside their jurisdiction. Our results pave the way for developing new strategies to enhance the resilience and sustainability of port infrastructure and maritime trade.


Asunto(s)
Comercio , Internacionalidad
2.
Sci Rep ; 10(1): 6866, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32321938

RESUMEN

Extreme wind events are among the costliest natural disasters in Europe, causing severe damages every year. Despite the significant impact, damages related to windstorms are an understudied topic in academia. For damage estimates, the community mostly relies on post-disaster insurance data, which is often not publicly available. Few studies offer more generic tools, but again these are often based on non-disclosed insurance data. To offer a generic, high-resolution, reproducible, and publicly accessible tool, this study presents a wind damage model that is built around publicly available hazard, exposure, and vulnerability data. We apply the model to assess building damages related to extratropical storms in Europe, but the methodology is applicable globally, given data availability, and to other hazards for which similar risk frameworks can be applied. The results show that for Europe, coastal regions are affected the most, with the United Kingdom, Ireland, Germany, France, the Netherlands, and Denmark as most affected countries. We find that the modelled damage estimates are in line with reported damages for a series of historical storms. The model is distributed as an open-source model to offer a transparent and useable windstorm damage model to a broad audience.

3.
Sci Data ; 7(1): 19, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941897

RESUMEN

Limited data on global power infrastructure makes it difficult to respond to challenges in electricity access and climate change. Although high-voltage data on transmission networks are often available, medium- and low-voltage data are often non-existent or unavailable. This presents a challenge for practitioners working on the electricity access agenda, power sector resilience or climate change adaptation. Using state-of-the-art algorithms in geospatial data analysis, we create a first composite map of the global power system with an open license. We find that 97% of the global population lives within 10 km of a MV line, but with large variations between regions and income levels. We show an accuracy of 75% across our validation set of 14 countries, and we demonstrate the value of these data at both a national and regional level. The results from this study pave the way for improved efforts in electricity modelling and planning and are an important step in tackling the Sustainable Development Goals.

4.
Nat Commun ; 10(1): 2677, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31239442

RESUMEN

Transport infrastructure is exposed to natural hazards all around the world. Here we present the first global estimates of multi-hazard exposure and risk to road and rail infrastructure. Results reveal that ~27% of all global road and railway assets are exposed to at least one hazard and ~7.5% of all assets are exposed to a 1/100 year flood event. Global Expected Annual Damages (EAD) due to direct damage to road and railway assets range from 3.1 to 22 billion US dollars, of which ~73% is caused by surface and river flooding. Global EAD are small relative to global GDP (~0.02%). However, in some countries EAD reach 0.5 to 1% of GDP annually, which is the same order of magnitude as national transport infrastructure budgets. A cost-benefit analysis suggests that increasing flood protection would have positive returns on ~60% of roads exposed to a 1/100 year flood event.

5.
Risk Anal ; 35(5): 882-900, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25515065

RESUMEN

In this article, we propose an integrated direct and indirect flood risk model for small- and large-scale flood events, allowing for dynamic modeling of total economic losses from a flood event to a full economic recovery. A novel approach is taken that translates direct losses of both capital and labor into production losses using the Cobb-Douglas production function, aiming at improved consistency in loss accounting. The recovery of the economy is modeled using a hybrid input-output model and applied to the port region of Rotterdam, using six different flood events (1/10 up to 1/10,000). This procedure allows gaining a better insight regarding the consequences of both high- and low-probability floods. The results show that in terms of expected annual damage, direct losses remain more substantial relative to the indirect losses (approximately 50% larger), but for low-probability events the indirect losses outweigh the direct losses. Furthermore, we explored parameter uncertainty using a global sensitivity analysis, and varied critical assumptions in the modeling framework related to, among others, flood duration and labor recovery, using a scenario approach. Our findings have two important implications for disaster modelers and practitioners. First, high-probability events are qualitatively different from low-probability events in terms of the scale of damages and full recovery period. Second, there are substantial differences in parameter influence between high-probability and low-probability flood modeling. These findings suggest that a detailed approach is required when assessing the flood risk for a specific region.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA