Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 67(4): 2559-2569, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38305157

RESUMEN

Parkinson's disease (PD) is one of the most highly debilitating neurodegenerative disorders, which affects millions of people worldwide, and leucine-rich repeat kinase 2 (LRRK2) mutations have been involved in the pathogenesis of PD. Developing a potent LRRK2 positron emission tomography (PET) tracer would allow for in vivo visualization of LRRK2 distribution and expression in PD patients. In this work, we present the facile synthesis of two potent and selective LRRK2 radioligands [11C]3 ([11C]PF-06447475) and [18F]4 ([18F]PF-06455943). Both radioligands exhibited favorable brain uptake and specific bindings in rodent autoradiography and PET imaging studies. More importantly, [18F]4 demonstrated significantly higher brain uptake in the transgenic LRRK2-G2019S mutant and lipopolysaccharide (LPS)-injected mouse models. This work may serve as a roadmap for the future design of potent LRRK2 PET tracers.


Asunto(s)
Morfolinas , Nitrilos , Enfermedad de Parkinson , Pirimidinas , Ratones , Animales , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Leucina , Tomografía de Emisión de Positrones/métodos , Enfermedad de Parkinson/metabolismo , Mutación
2.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37513875

RESUMEN

Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) is a selective inhibitor of glutaminase-1 (GLS1), consequently inhibiting glutaminolysis. BPTES is known for its potent antitumor activity and plays a significant role in senescent cell removal. In this study, we synthesized [11C-carbonyl]BPTES ([11C]BPTES) as a positron emission tomography (PET) probe for the first time and assessed its biodistribution in mice using PET. [11C]BPTES was synthesized by the reaction of an amine precursor () with [11C-carbonyl]phenylacetyl acid anhydride ([11C]2), which was prepared from [11C]CO2 and benzyl magnesium chloride, followed by in situ treatment with isobutyl chloroformate. The decay-corrected isolated radiochemical yield of [11C]BPTES was 9.5% (based on [11C]CO2) during a synthesis time of 40 min. A PET study with [11C]BPTES showed high uptake levels of radioactivity in the liver, kidney, and small intestine of mice.

3.
EJNMMI Radiopharm Chem ; 8(1): 14, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37458904

RESUMEN

BACKGROUND: A family of BF2-chelated tetraaryl-azadipyrromethenes was developed as non-porphyrin photosensitizers for photodynamic therapy. Among the developed photosensitizers, ADPM06 exhibited excellent photochemical and photophysical properties. Molecular imaging is a useful tool for photodynamic therapy planning and monitoring. Radiolabeled photosensitizers can efficiently address photosensitizer biodistribution, providing helpful information for photodynamic therapy planning. To evaluate the biodistribution of ADPM06 and predict its pharmacokinetics on photodynamic therapy with light irradiation immediately after administration, we synthesized [18F]ADPM06 and evaluated its in vivo properties. RESULTS: [18F]ADPM06 was automatically synthesized by Lewis acid-assisted isotopic 18F-19F exchange using ADPM06 and tin (IV) chloride at room temperature for 10 min. Radiolabeling was carried out using 0.4 µmol of ADPM06 and 200 µmol of tin (IV) chloride. The radiosynthesis time was approximately 60 min, and the radiochemical purity was > 95% at the end of the synthesis. The decay-corrected radiochemical yield from [18F]F- at the start of synthesis was 13 ± 2.7% (n = 5). In the biodistribution study of male ddY mice, radioactivity levels in the heart, lungs, liver, pancreas, spleen, kidney, small intestine, muscle, and brain gradually decreased over 120 min after the initial uptake. The mean radioactivity level in the thighbone was the highest among all organs investigated and increased for 120 min after injection. Upon co-injection with ADPM06, the radioactivity levels in the blood and brain significantly increased, whereas those in the heart, lung, liver, pancreas, kidney, small intestine, muscle, and thighbone of male ddY mice were not affected. In the metabolite analysis of the plasma at 30 min post-injection in female BALB/c-nu/nu mice, the percentage of radioactivity corresponding to [18F]ADPM06 was 76.3 ± 1.6% (n = 3). In a positron emission tomography study using MDA-MB-231-HTB-26 tumor-bearing mice (female BALB/c-nu/nu), radioactivity accumulated in the bone at a relatively high level and in the tumor at a moderate level for 60 min after injection. CONCLUSIONS: We synthesized [18F]ADPM06 using an automated 18F-labeling synthesizer and evaluated the initial uptake and pharmacokinetics of ADPM06 using biodistribution of [18F]ADPM06 in mice to guide photodynamic therapy with light irradiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...