Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Br J Pharmacol ; 180(21): 2822-2836, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37336547

RESUMEN

BACKGROUND AND PURPOSE: Chronic pain is a devastating problem affecting one in five individuals around the globe, with neuropathic pain the most debilitating and poorly treated type of chronic pain. Advances in transcriptomics have contributed to cataloguing diverse cellular pathways and transcriptomic alterations in response to peripheral nerve injury but have focused on phenomenology and classifying transcriptomic responses. EXPERIMENTAL APPROACH: To identifying new types of pain-relieving agents, we compared transcriptional reprogramming changes in the dorsal spinal cord after peripheral nerve injury cross-sex and cross-species, and imputed commonalities, as well as differences in cellular pathways and gene regulation. KEY RESULTS: We identified 93 transcripts in the dorsal horn that were increased by peripheral nerve injury in male and female mice and rats. Following gene ontology and transcription factor analyses, we constructed a pain interactome for the proteins encoded by the differentially expressed genes, discovering new, conserved signalling nodes. We investigated the interactome with the Drug-Gene database to predict FDA-approved medications that may modulate key nodes within the network. The top hit from the analysis was fostamatinib, the molecular target of which is the non-receptor spleen associated tyrosine kinase (Syk), which our analysis had identified as a key node in the interactome. We found that intrathecally administrating the active metabolite of fostamatinib, R406 and another Syk inhibitor P505-15, significantly reversed pain hypersensitivity in both sexes. CONCLUSIONS AND IMPLICATIONS: Thus, we have identified and shown the efficacy of an agent that could not have been previously predicted to have analgesic properties.


Asunto(s)
Dolor Crónico , Neuralgia , Traumatismos de los Nervios Periféricos , Femenino , Ratas , Ratones , Masculino , Animales , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Traumatismos de los Nervios Periféricos/metabolismo , Dolor Crónico/metabolismo , Neuralgia/tratamiento farmacológico , Neuralgia/genética , Neuralgia/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Hiperalgesia/metabolismo
2.
J Neuroinflammation ; 18(1): 124, 2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34082772

RESUMEN

BACKGROUND: Alzheimer's disease (AD) and Parkinson's disease (PD) are characterized by brain accumulation of aggregated amyloid-beta (Aß) and alpha-synuclein (αSYN), respectively. In order to develop effective therapies, it is crucial to understand how the Aß/αSYN aggregates can be cleared. Compelling data indicate that neuroinflammatory cells, including astrocytes and microglia, play a central role in the pathogenesis of AD and PD. However, how the interplay between the two cell types affects their clearing capacity and consequently the disease progression remains unclear. METHODS: The aim of the present study was to investigate in which way glial crosstalk influences αSYN and Aß pathology, focusing on accumulation and degradation. For this purpose, human-induced pluripotent cell (hiPSC)-derived astrocytes and microglia were exposed to sonicated fibrils of αSYN or Aß and analyzed over time. The capacity of the two cell types to clear extracellular and intracellular protein aggregates when either cultured separately or in co-culture was studied using immunocytochemistry and ELISA. Moreover, the capacity of cells to interact with and process protein aggregates was tracked using time-lapse microscopy and a customized "close-culture" chamber, in which the apical surfaces of astrocyte and microglia monocultures were separated by a <1 mm space. RESULTS: Our data show that intracellular deposits of αSYN and Aß are significantly reduced in co-cultures of astrocytes and microglia, compared to monocultures of either cell type. Analysis of conditioned medium and imaging data from the "close-culture" chamber experiments indicate that astrocytes secrete a high proportion of their internalized protein aggregates, while microglia do not. Moreover, co-cultured astrocytes and microglia are in constant contact with each other via tunneling nanotubes and other membrane structures. Notably, our live cell imaging data demonstrate that microglia, when attached to the cell membrane of an astrocyte, can attract and clear intracellular protein deposits from the astrocyte. CONCLUSIONS: Taken together, our data demonstrate the importance of astrocyte and microglia interactions in Aß/αSYN clearance, highlighting the relevance of glial cellular crosstalk in the progression of AD- and PD-related brain pathology.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Astrocitos/metabolismo , Astrocitos/patología , Microglía/metabolismo , Microglía/patología , Agregado de Proteínas , Agregación Patológica de Proteínas , alfa-Sinucleína/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Estructuras de la Membrana Celular/fisiología , Células Cultivadas , Técnicas de Cocultivo , Humanos , Células Madre Pluripotentes Inducidas , Microscopía Confocal , Nanotubos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Proteolisis
3.
Elife ; 82019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31612854

RESUMEN

Antibodies are a key resource in biomedical research yet there are no community-accepted standards to rigorously characterize their quality. Here we develop a procedure to validate pre-existing antibodies. Human cell lines with high expression of a target, determined through a proteomics database, are modified with CRISPR/Cas9 to knockout (KO) the corresponding gene. Commercial antibodies against the target are purchased and tested by immunoblot comparing parental and KO. Validated antibodies are used to definitively identify the most highly expressing cell lines, new KOs are generated if needed, and the lines are screened by immunoprecipitation and immunofluorescence. Selected antibodies are used for more intensive procedures such as immunohistochemistry. The pipeline is easy to implement and scalable. Application to the major ALS disease gene C9ORF72 identified high-quality antibodies revealing C9ORF72 localization to phagosomes/lysosomes. Antibodies that do not recognize C9ORF72 have been used in highly cited papers, raising concern over previously reported C9ORF72 properties.


Asunto(s)
Esclerosis Amiotrófica Lateral/diagnóstico , Anticuerpos Monoclonales/química , Proteína C9orf72/genética , Demencia Frontotemporal/diagnóstico , Inmunohistoquímica/normas , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/inmunología , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Anticuerpos Monoclonales/clasificación , Anticuerpos Monoclonales/inmunología , Biomarcadores/metabolismo , Proteína C9orf72/inmunología , Sistemas CRISPR-Cas , Línea Celular Tumoral , Demencia Frontotemporal/genética , Demencia Frontotemporal/inmunología , Demencia Frontotemporal/metabolismo , Edición Génica , Expresión Génica , Células HEK293 , Humanos , Lisosomas/genética , Lisosomas/metabolismo , Lisosomas/ultraestructura , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Osteoblastos/metabolismo , Osteoblastos/ultraestructura , Fagosomas/genética , Fagosomas/metabolismo , Fagosomas/ultraestructura , Células RAW 264.7
4.
Front Immunol ; 10: 1657, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31379852

RESUMEN

Neuroinflammation is a prominent pathological feature of all neuroimmunological diseases, including, but not limited to, multiple sclerosis (MS), myasthenia gravis, neuromyelitis optica, and Guillain-Barré syndrome. All currently-approved therapies for the treatment of these diseases focus on controlling or modulating the immune (innate and adaptive) responses to limit demyelination and neuronal damage. The primary purpose of this review is to detail the pre-clinical data and proposed mechanism of action of novel drugs currently in clinical trial, with a focus on novel compounds that promote repair and regeneration in the central nervous system (CNS). As the most recent advances have been made in the field of MS research, this review will focus primarily on this disease and its animal models. However, these compounds are likely to be effective for a range of indications with a neuroinflammatory component. Traditionally, MS was thought to proceed through two distinct phases. The first, predominantly inflammatory stage, is characterized by acute episodes of clinical relapse, followed by periods of partial or total recovery with an apparent absence of overall disease progression. In the vast majority of patients, this relapsing-remitting disease subsequently progresses into a second more chronic, neurodegenerative phase, which is characterized by oligodendrocyte damage and axonal destruction leading to brain atrophy and an accumulation of disability. Recent work has shown that rather than occurring independently, both the inflammatory and degenerative phases may run concurrently. This, combined with evidence that early therapeutic intervention slows accumulation of disability and delays progression, highlights the need for novel therapeutic approaches that promote repair and regeneration early in the disease trajectory. Such compounds may be used as monotherapies or in conjunction with classical anti-inflammatory therapies. This review will highlight novel therapies currently in clinical trial, and likely to appear in clinical practice in the near future, focusing on compounds that target the immune system and/or enhance endogenous repair mechanisms in the CNS.


Asunto(s)
Enfermedades Neurodegenerativas/terapia , Animales , Antiinflamatorios/uso terapéutico , Humanos , Enfermedades Neurodegenerativas/inmunología , Neuroinmunomodulación , Remielinización
5.
Neuron ; 103(6): 1016-1033.e10, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31375314

RESUMEN

iPSC-derived microglia offer a powerful tool to study microglial homeostasis and disease-associated inflammatory responses. Yet, microglia are highly sensitive to their environment, exhibiting transcriptomic deficiencies when kept in isolation from the brain. Furthermore, species-specific genetic variations demonstrate that rodent microglia fail to fully recapitulate the human condition. To address this, we developed an approach to study human microglia within a surrogate brain environment. Transplantation of iPSC-derived hematopoietic-progenitors into the postnatal brain of humanized, immune-deficient mice results in context-dependent differentiation into microglia and other CNS macrophages, acquisition of an ex vivo human microglial gene signature, and responsiveness to both acute and chronic insults. Most notably, transplanted microglia exhibit robust transcriptional responses to Aß-plaques that only partially overlap with that of murine microglia, revealing new, human-specific Aß-responsive genes. We therefore have demonstrated that this chimeric model provides a powerful new system to examine the in vivo function of patient-derived and genetically modified microglia.


Asunto(s)
Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Diferenciación Celular , Expresión Génica , Microglía/metabolismo , Placa Amiloide/genética , Quimera por Trasplante , Animales , Encéfalo/citología , Modelos Animales de Enfermedad , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Trasplante de Células Madre Hematopoyéticas , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Factor Estimulante de Colonias de Macrófagos/genética , Ratones , Ratones Transgénicos , Microglía/citología , Trombopoyetina/genética
6.
CNS Neurosci Ther ; 23(4): 272-290, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28317317

RESUMEN

Caffeine is the most widely used psychostimulant in Western countries, with antioxidant, anti-inflammatory and anti-apoptotic properties. In Alzheimer's disease (AD), caffeine is beneficial in both men and women, in humans and animals. Similar effects of caffeine were observed in men with Parkinson's disease (PD); however, the effect of caffeine in female PD patients is controversial due to caffeine's competition with estrogen for the estrogen-metabolizing enzyme, CYP1A2. Studies conducted in animal models of amyotrophic lateral sclerosis (ALS) showed protective effects of A2A R antagonism. A study found caffeine to be associated with earlier age of onset of Huntington's disease (HD) at intakes >190 mg/d, but studies in animal models have found equivocal results. Caffeine is protective in AD and PD at dosages equivalent to 3-5 mg/kg. However, further research is needed to investigate the effects of caffeine on PD in women. As well, the effects of caffeine in ALS, HD and Machado-Joseph disease need to be further investigated. Caffeine's most salient mechanisms of action relevant to neurodegenerative diseases need to be further explored.


Asunto(s)
Cafeína/uso terapéutico , Enfermedades Neurodegenerativas/prevención & control , Fármacos Neuroprotectores/uso terapéutico , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...