Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(1): 286-296, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36475541

RESUMEN

Anchoring single metal atoms on suitable substrates is a convenient route towards materials with unique electronic and magnetic properties exploitable in a wide range of applications including sensors, data storage, and single atom catalysis (SAC). Among a large portfolio of available substrates, carbon-based materials derived from graphene and its derivatives have received growing concern due to their high affinity to metals combined with biocompatibility, low toxicity, and accessibility. Cyanographene (GCN) as highly functionalized graphene containing homogeneously distributed nitrile groups perpendicular to the surface offers exceptionally favourable arrangement for anchoring metal atoms enabling efficient charge exchange between the metal and the substrate. However, the binding characteristics of metal species can be significantly affected by the coordination effects. Here we employed density functional theory (DFT) calculations to analyse the role of coordination in the binding of late 3d cations (Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Cu+, and Zn2+) to GCN in aqueous solutions. The inspection of several plausible coordination types revealed the most favourable arrangements. Among the studied species, copper cations were found to be the most tightly bonded to GCN, which was also confirmed by the X-ray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (AAS), and isothermal titration calorimetry (ITC) measurements. In general, the inclusion of coordination effects significantly reduced the binding affinities predicted by implicit solvation models. Clearly, to build-up reliable models of SAC architectures in the environments enabling the formation of a coordination sphere, such effects need to be properly taken into account.


Asunto(s)
Grafito , Metales/química , Cobre/química , Cationes
2.
Small ; 18(33): e2201003, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35775954

RESUMEN

Access to clean water for drinking, sanitation, and irrigation is a major sustainable development goal of the United Nations. Thus, technologies for cleaning water and quality-monitoring must become widely accessible and of low-cost, while being effective, selective, sustainable, and eco-friendly. To meet this challenge, hetero-bifunctional nanographene fluorescent beacons with high-affinity pockets for heavy metals are developed, offering top-rated and selective adsorption for cadmium and lead, reaching 870 and 450 mg g-1 , respectively. The heterobifunctional and multidentate pockets also operate as selective gates for fluorescence signal regulation with sub-nanomolar sensitivity (0.1 and 0.2 nm for Pb2+ and Cd2+ , respectively), due to binding affinities as low as those of antigen-antibody interactions. Importantly, the acid-proof nanographenes can be fully regenerated and reused. Their broad visible-light absorption offers an additional mode for water-quality monitoring based on ultra-low cost and user-friendly reagentless paper detection with the naked-eye at a limit of detection of 1 and 10 ppb for Pb2+ and Cd2+ ions, respectively. This work shows that photoactive nanomaterials, densely-functionalized with strong, yet selective ligands for targeted contaminants, can successfully combine features such as excellent adsorption, reusability, and sensing capabilities, in a way to extend the material's applicability, its life-cycle, and value-for-money.


Asunto(s)
Grafito , Metales Pesados , Adsorción , Cadmio , Descontaminación , Plomo , Agua
3.
Adv Sci (Weinh) ; 8(12): 2003090, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34194925

RESUMEN

The ability of bacteria to develop resistance to antibiotics is threatening one of the pillars of modern medicine. It was recently understood that bacteria can develop resistance even to silver nanoparticles by starting to produce flagellin, a protein which induces their aggregation and deactivation. This study shows that silver covalently bound to cyanographene (GCN/Ag) kills silver-nanoparticle-resistant bacteria at concentrations 30 times lower than silver nanoparticles, a challenge which has been so far unmet. Tested also against multidrug resistant strains, the antibacterial activity of GCN/Ag is systematically found as potent as that of free ionic silver or 10 nm colloidal silver nanoparticles. Owing to the strong and multiple dative bonds between the nitrile groups of cyanographene and silver, as theory and experiments confirm, there is marginal silver ion leaching, even after six months of storage, and thus very high cytocompatibility to human cells. Molecular dynamics simulations suggest strong interaction of GCN/Ag with the bacterial membrane, and as corroborated by experiments, the antibacterial activity does not rely on the release of silver nanoparticles or ions. Endowed with these properties, GCN/Ag shows that rigid supports selectively and densely functionalized with potent silver-binding ligands, such as cyanographene, may open new avenues against microbial resistance.


Asunto(s)
Antibacterianos/uso terapéutico , Infecciones Bacterianas/tratamiento farmacológico , Farmacorresistencia Bacteriana/efectos de los fármacos , Nanopartículas del Metal/uso terapéutico , Plata/uso terapéutico , Nanopartículas del Metal/química , Plata/química
4.
ACS Nano ; 15(2): 3349-3358, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33464824

RESUMEN

Sorption technologies, enabling removal of heavy metals, play a pivotal role in meeting the global demands for unrestricted access to drinking water. Standard sorption technologies suffer from limited efficiency related to the weak sorbent-metal interaction. Further challenges include the development of technologies enabling smart metal recovery and sorbent regeneration. To this end, a densely functionalized graphene, with 33% by mass content of carboxyl groups, linked through direct C-C bonds (graphene acid, GA) represents a previously unexplored solution to this challenge. GA revealed excellent efficiency for removal of highly toxic metals, such as Cd2+ and Pb2+. Due to its selective chemistry, GA can bind heavy metals with high affinity, even at concentrations of 1 mg L-1 and in the presence of competing ions of natural drinking water, and reduce them down to drinking water allowance levels of a few µg L-1. This is not only due to carboxyl groups but also due to the stable radical centers of the GA structure, enabling metal ion-radical interactions, as proved by EPR, XPS, and density functional theory calculations. GA offers full structural integrity during the highly acidic and basic treatment, which is exploited for noble metal recovery (Ga3+, In3+, Pd2+) and sorbent regeneration. Owing to these attributes, GA represents a fully reusable metal sorbent, applicable also in electrochemical energy technologies, as illustrated with a GA/Pt catalyst derived from Pt4+-contaminated water.

5.
J Hazard Mater ; 405: 124665, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33301974

RESUMEN

In a number of laboratory studies, sulfidated nanoscale zero-valent iron (S-nZVI) particles showed increased reactivity, reducing capacity, and electron selectivity for Cr(VI) removal from contaminated waters. In our study, core-shell S-nZVI particles were successfully injected into an aquifer contaminated with Cr(VI) at a former chrome plating facility. S-nZVI migrated towards monitoring wells, resulting in a rapid decrease in Cr(VI) and Crtot concentrations and a long-term decrease in groundwater redox potential observed even 35 m downstream the nearest injection well. Characterization of materials recovered from the injection and monitoring wells confirmed the presence of nZVI particles, together with iron corrosion products. Chromium was identified on the surface of the recovered iron particles as Cr(III), and its occurrence was linked to the formation of insoluble chromium-iron (oxyhydr)oxides such as CrxFe(1-x)(OH)3(s). Injected S-nZVI particles formed aggregates, which were slowly transformed into iron (oxyhydr)oxides and carbonate green rust. Elevated contents of Fe0 were detected even several months after injection, indicating good S-nZVI longevity. The sulfide shell was gradually disintegrated and/or dissolved. Geochemical modelling confirmed the overall stability of the resulting Cr(III) phase at field conditions. This study demonstrates the applicability of S-nZVI for the remediation of a Cr(VI)-contaminated aquifer.

6.
Diagn Pathol ; 15(1): 132, 2020 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-33100226

RESUMEN

BACKGROUND: Spitzoid melanocytic lesions represent a heterogeneous group of proliferations with ambiguous and overlapping terminology. The exact distinction of a Spitz nevus from a Spitzoid melanoma can be very difficult or, in some cases, impossible. Among the Spitzoid lesions, there is a lesion termed an atypical Spitz tumour (AST) that has intermediate histopathologic features between those of a Spitz nevus and a Spitzoid melanoma and thus uncertain malignant potential. There are several rare cases of patients with a Spitzoid melanoma initially misdiagnosed as a Spitz nevus or an AST with fatal consequences. It is, therefore, advised to perform a molecular characterization in cases where uncertain skin lesions are presented, as it may provide extended set of information with a possible impact on the treatment options. Furthermore, preventive measures, such as regular physical and skin examinations, as well as thorough scheduling of individual follow-up visits, are essential in patients with potentially malignant skin nevi. CASE REPORT: We report a case of a young adult female with a history of AST excision with a negative sentinel lymph node biopsy (SLNB) and insufficient follow-up. Four years after the primary dermatological diagnosis, she presented with a giant tumour in the right hemithorax. Radical en bloc resection of the tumour with right pneumonectomy and resection of the pericardium with reconstruction of the pericardium using mesh was performed. A definitive histopathological examination revealed a metastatic melanoma. The association of the previously diagnosed AST and subsequent appearance of melanoma metastases led to a retrospective re-evaluation of the initial lesion. The suspected diagnosis of Spitzoid melanoma, however, was not confirmed. Moreover, the molecular examination revealed a major discordance between the initial lesion and the lung tumour, which most likely excluded the possible association of the lung metastasis with the initial skin lesion. The initial skin lesion was a BRAF-mutant melanoma with Spitzoid features and termed as AST, while the giant lung metastasis was NRAS-mutant melanoma. The subsequent postoperative course was complicated by the appearance of brain metastases that were stereotactically irradiated. Nevertheless, despite complex specialised medical care, the patient's clinical condition rapidly deteriorated. By this time, no active oncological treatment was possible. The patient was delegated to local hospice for palliative care six months after the surgery and died three weeks later. CONCLUSIONS: Our patient was surgically treated at the age of 20 for AST and died four years later of metastatic NRAS-mutant melanoma most likely of different occult origin. Molecular characterization, as well as the close clinical follow-up should be always precisely performed in patients with uncertain skin lesions, such as AST.


Asunto(s)
Neoplasias Pulmonares/secundario , Melanoma/secundario , Neoplasias Primarias Múltiples/genética , Nevo de Células Epitelioides y Fusiformes/patología , Neoplasias Cutáneas/patología , Femenino , GTP Fosfohidrolasas/genética , Humanos , Melanoma/genética , Proteínas de la Membrana/genética , Mutación , Neoplasias Primarias Múltiples/patología , Nevo de Células Epitelioides y Fusiformes/genética , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/secundario , Adulto Joven , Melanoma Cutáneo Maligno
7.
Water Res ; 141: 357-365, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29804022

RESUMEN

Arsenic compounds are carcinogenic to humans and are typically removed from contaminated water using various sorbents. The ionic composition plays a significant role in arsenate removal efficiency during the process of water remediation. Here, we quantify the effects of natural ions (chlorides, nitrates, carbonates, sulfates, and phosphates) and humic acid on the removal of arsenates by ferrate(VI) at pH = 6.6. In the experiments, the initial concentration of arsenates was 10 mg L-1 (as As) and the concentrations of ions varied in the range from 5 to 100 mg L-1 of element in ionic form and humic acid. The achieved results show that only phosphate ions had principle influence on the efficiency of arsenate removal by ferrate(VI). The effect of phosphates was elucidated by applying transmission electron microscopy, energy-dispersive X-ray spectroscopy, and low temperature in-field 57Fe Mössbauer spectroscopy to solid samples, prepared under different weight ratios of ferrate(VI), arsenates, and phosphates. These results show three crucial effects of phosphates on the arsenate removal mechanisms. At low P:As weight ratio (up to 1:1), the incorporation of arsenate ions into the crystalline structure of γ-Fe2O3/γ-FeOOH nanoparticles was found to be suppressed by the presence of phosphates. Thus, arsenates were mainly adsorbed onto the surface of γ-Fe2O3/γ-FeOOH nanoparticles. Further increase in the P:As weight ratio (more than 1:1) resulted in the competition between arsenates and phosphates sorption. With the increased concentration of phosphate ions, the number of arsenates on the surface of γ-Fe2O3/γ-FeOOH nanoparticles was reduced. Finally, the complexation of iron(III) ions with phosphate ions occurred, leading to a decrease in the arsenates removal efficiency, which resulted from a lower content of precipitated γ-Fe2O3/γ-FeOOH nanoparticles. All these aspects need to be considered prior to application of ferrate(VI) for arsenates removal in real natural waters.


Asunto(s)
Arseniatos/química , Compuestos Férricos/química , Sustancias Húmicas , Hierro/química , Fosfatos/química , Contaminantes Químicos del Agua/química , Adsorción , Carbonatos/química , Cloruros/química , Concentración de Iones de Hidrógeno , Nitratos/química , Espectroscopía de Mossbauer , Sulfatos/química , Purificación del Agua/métodos
8.
Ecotoxicol Environ Saf ; 147: 110-116, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28841525

RESUMEN

Concerns regarding the potential toxic effects of zinc oxide nanoparticles (ZnO NPs) on aquatic organisms are growing due to the fact that NPs may be released into aquatic ecosystems. This study aimed to investigate the effects of dietary exposure to ZnO NPs on juvenile common carp (Cyprinus carpio). Fish were fed a spiked diets at doses 50 and 500mg of ZnO NPs per kg of feed for 6 weeks followed by a 2-week recovery period. Fish were sampled every 2 weeks for haematology trends, blood biochemistry measures, histology analyses, and determination of the accumulation of zinc in tissues. At the end of the exposure and post-exposure periods, fish were sampled for an assessment of lipid peroxidation levels. Dietborne ZnO NPs had no effects on haematology, blood biochemistry, and lipid peroxidation levels during the exposure period. After the recovery period, aspartate aminotransferase activity significantly (p < 0.05) increased and alanine transferase activity significantly (p < 0.05) decreased in the higher exposure group. The level of lipid peroxidation significantly (p < 0.05) decreased in liver of treated fish after 2 weeks post-exposure period. A histological examination revealed mild histopathological changes in kidneys during exposure. Our results did not show a significant increase of zinc content at the end of experiment in any of tested organs. However, chronic dietary exposure to ZnO NPs might affect kidney and liver function.


Asunto(s)
Carpas/fisiología , Monitoreo del Ambiente/métodos , Nanopartículas del Metal/toxicidad , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Óxido de Zinc/toxicidad , Animales , Carpas/metabolismo , Dieta , Relación Dosis-Respuesta a Droga , Riñón/efectos de los fármacos , Riñón/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Factores de Tiempo , Distribución Tisular , Contaminantes Químicos del Agua/metabolismo , Óxido de Zinc/metabolismo
9.
J Thorac Oncol ; 12(2): 249-257, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27793776

RESUMEN

INTRODUCTION: Lung cancer is the leading cause of cancer mortality worldwide; therefore, understanding the biological or clinical role of tumor-associated antigens and autoantibodies is of eminent interest for designing antitumor immunotherapeutic strategies. METHODS: Here we prospectively analyzed the serum frequencies of New York esophageal squamous cell carcinoma 1 (NY-ESO-1), human epidermal growth factor 2/neu, and melanoma-associated antigen A4 (MAGE-A4) antibodies and expression of the corresponding antigens in tumors of 121 patients with NSCLC undergoing an operation without prior neoadjuvant chemotherapy and compared them with those in 57 control age-matched patients with no history of a malignant disease. RESULTS: We found that only antibodies specific for NY-ESO-1 (19.8% [n = 24 of 121]) were significantly increased in the group of patients with NSCLC compared with in the controls. NY-ESO-1 seropositivity was significantly positively associated with an active smoking history in patients with NSCLC but not in smokers from the control group. In tumors, the frequency of NY-ESO-1 mRNA expression was 6.3% (in four of 64 patients), the frequency of human epidermal growth factor 2/neu (HER 2/neu) expression was 11.9% (five of 42), and the frequency of MAGE-A4 expression was 35.1% (20 of 57). MAGE-A4 expression in tumors correlated with smoking status and male sex in patients with NSCLC. Patients with squamous cell carcinoma displayed higher expression of NY-ESO-1 and MAGE-A4 in tumors than did patients with adenocarcinoma. On the other hand, 94.7% of nonsmoking patients in our study had adenocarcinoma (of whom 73.7% were women). CONCLUSION: These results confirm the reported high immunogenicity of NY-ESO-1 and suggest that a smoking-induced chronic inflammatory state might potentiate the development of NY-ESO-1-specific immune responses. Moreover, smoking might contribute to the expression of other cancer/testis antigens such as MAGE-A4 at early stages of NSCLC development.


Asunto(s)
Antígenos de Neoplasias/sangre , Biomarcadores de Tumor/sangre , Carcinoma de Pulmón de Células no Pequeñas/sangre , Neoplasias Pulmonares/sangre , Proteínas de la Membrana/sangre , Proteínas de Neoplasias/sangre , Receptor ErbB-2/sangre , Fumar/efectos adversos , Adenocarcinoma/sangre , Adenocarcinoma/etiología , Adenocarcinoma/patología , Adulto , Anciano , Anciano de 80 o más Años , Antígenos de Neoplasias/inmunología , Carcinoma de Pulmón de Células no Pequeñas/etiología , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas/sangre , Carcinoma de Células Escamosas/etiología , Carcinoma de Células Escamosas/patología , Estudios de Casos y Controles , Femenino , Estudios de Seguimiento , Humanos , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/patología , Masculino , Proteínas de la Membrana/inmunología , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Estudios Prospectivos
10.
Water Res ; 103: 83-91, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27438903

RESUMEN

Despite the importance of phosphorus as a nutrient for humans and its role in ecological sustainability, its high abundance, resulting in large part from human activities, causes eutrophication that negatively affects the environment and public health. Here, we present the use of ferrate(VI) as an alternative agent for removing phosphorus from aqueous media. We address the mechanism of phosphate removal as a function of the Fe/P mass ratio and the pH value of the solution. The isoelectric point of γ-Fe2O3 nanoparticles, formed as dominant Fe(VI) decomposition products, was identified to play a crucial role in predicting their efficiency in removing of phosphates. Importantly, it was found that the removal efficiency dramatically changes if Fe(VI) is added before (ex-situ conditions) or after (in-situ conditions) the introduction of phosphates into water. Removal under in-situ conditions showed remarkable sorption capacity of 143.4 mg P per gram of ferric precipitates due to better accessibility of active surface sites on in-situ formed ferric oxides/oxyhydroxides. At pH = 6.0-7.0, complete removal of phosphates was observed at a relatively low Fe/P mass ratio (5:1). The results show that phosphates are removed from water solely by sorption on the surface of γ-Fe2O3/γ-FeOOH core/shell nanoparticles. The advantages of Fe(VI) utilization include its environmentally friendly nature, the possibility of easy separation of the final product from water by a magnetic field or by natural settling, and the capacity for successful phosphate elimination at pH values near the neutral range and at low Fe/P mass ratios.


Asunto(s)
Compuestos Férricos/química , Contaminantes Químicos del Agua/química , Hierro/química , Nanopartículas , Fosfatos , Purificación del Agua
11.
Environ Sci Technol ; 49(4): 2319-27, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25607569

RESUMEN

The removal efficiency of heavy metal ions (cadmium(II), Cd(II); cobalt(II), Co(II); nickel(II), Ni(II); copper(II), Cu(II)) by potassium ferrate(VI) (K2FeO4, Fe(VI)) was studied as a function of added amount of Fe(VI) (or Fe) and varying pH. At pH = 6.6, the effective removal of Co(II), Ni(II), and Cu(II) from water was observed at a low Fe-to-heavy metal ion ratio (Fe/M(II) = 2:1) while a removal efficiency of 70% was seen for Cd(II) ions at a high Fe/Cd(II) weight ratio of 15:1. The role of ionic radius and metal valence state was explored by conducting similar removal experiments using Al(III) ions. The unique combination of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), in-field Mössbauer spectroscopy, and magnetization measurements enabled the delineation of several distinct mechanisms for the Fe(VI)-prompted removal of metal ions. Under a Fe/M weight ratio of 5:1, Co(II), Ni(II), and Cu(II) were removed by the formation of MFe2O4 spinel phase and partially through their structural incorporation into octahedral positions of γ-Fe2O3 (maghemite) nanoparticles. In comparison, smaller sized Al(III) ions got incorporated easily into the tetrahedral positions of γ-Fe2O3 nanoparticles. In contrast, Cd(II) ions either did not form the spinel ferrite structure or were not incorporated into the lattic of iron(III) oxide phase due to the distinct electronic structure and ionic radius. Environmentally friendly removal of heavy metal ions at a much smaller dosage of Fe than those of commonly applied iron-containing coagulants and the formation of ferrimagnetic species preventing metal ions leaching back into the environment and allowing their magnetic separation are highlighted.


Asunto(s)
Compuestos de Hierro/química , Nanopartículas de Magnetita/química , Metales Pesados/aislamiento & purificación , Compuestos de Potasio/química , Contaminantes Químicos del Agua/aislamiento & purificación , Cationes/química , Compuestos Férricos/química , Concentración de Iones de Hidrógeno , Metales Pesados/química , Espectroscopía de Fotoelectrones , Espectroscopía de Mossbauer , Agua , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Difracción de Rayos X
12.
Folia Microbiol (Praha) ; 60(1): 33-5, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25064474

RESUMEN

Invasive fungal diseases are severe complication of the lung transplant patients' follow-up as they are increasing the risk of rejection. We report a patient who developed possible Tyromyces fissilis co-infection during graft rejection episode 2 years after bilateral lung transplantation for cystic fibrosis. The fungus was detected using conventional culture methods as a filamentous basidiomycete and further placed to T. fissilis species based on internal transcribed spacer (ITS) rDNA sequences. The patient was treated according to the susceptibility testing results by voriconazole in combination with the anti-rejection therapy and recovered completely within few weeks. This is, to our knowledge, the first published case report of T. fissilis as a possible causative agent of an infection/rejection episode in a lung transplant recipient.


Asunto(s)
Rechazo de Injerto/microbiología , Trasplante de Pulmón/efectos adversos , Micosis/microbiología , Polyporales/fisiología , Complicaciones Posoperatorias/microbiología , Adulto , Humanos , Masculino , Micosis/etiología , Polyporales/genética , Polyporales/aislamiento & purificación , Complicaciones Posoperatorias/etiología , Receptores de Trasplantes , Adulto Joven
13.
Chemosphere ; 93(11): 2690-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24054133

RESUMEN

Arsenates, when present in water resources, constitute a risk to human health. In order to remove them, various technologies have been developed; out of them, sorption approach is widely adopted employing a wide spectrum of suitable sorbent materials. Nanoparticles of iron oxide are frequently used due to a high surface area and ability to control them by external magnetic field. In this work, we report on a simple and cheap synthesis of ultrafine iron(III) oxide nanoparticles with a narrow size distribution and their exploitation in the field of arsenate removal from aqueous environment. It is shown that the adsorption capacity is enhanced by a mesoporous nature of nanoparticle arrangement in their system due to strong magnetic interactions they evolve between nanoparticles. A complete arsenate removal is achieved at Fe/As ratio equal to ∼20/1 and at pH in the range from 5 to 7.6. Under these conditions, the arsenates are completely removed within several minutes of treatment. Among iron-oxide-based nanosystems synthesized and employed in arsenate remediation issues so far, our assembly of iron(III) oxide nanoparticles shows the highest Freundlich adsorption coefficient and equilibrium sorption capacity under conditions maintained. Taking into account simple and low-cost preparation procedure, product high yields, almost monodispersed character, room-temperature superparamagnetic behavior, and strong magnetic response under small applied magnetic fields, the synthesized iron(III) oxide nanoparticles can be regarded as a promising candidate for exploitation in the field of removing undesired toxic pollutants from various real water systems.


Asunto(s)
Arseniatos/química , Hierro/química , Nanopartículas del Metal/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Adsorción , Arseniatos/análisis , Cinética , Contaminantes Químicos del Agua/análisis
14.
Environ Sci Technol ; 47(7): 3283-92, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23451768

RESUMEN

We report the first example of arsenite and arsenate removal from water by incorporation of arsenic into the structure of nanocrystalline iron(III) oxide. Specifically, we show the capability to trap arsenic into the crystal structure of γ-Fe2O3 nanoparticles that are in situ formed during treatment of arsenic-bearing water with ferrate(VI). In water, decomposition of potassium ferrate(VI) yields nanoparticles having core-shell nanoarchitecture with a γ-Fe2O3 core and a γ-FeOOH shell. High-resolution X-ray photoelectron spectroscopy and in-field (57)Fe Mössbauer spectroscopy give unambiguous evidence that a significant portion of arsenic is embedded in the tetrahedral sites of the γ-Fe2O3 spinel structure. Microscopic observations also demonstrate the principal effect of As doping on crystal growth as reflected by considerably reduced average particle size and narrower size distribution of the "in-situ" sample with the embedded arsenic compared to the "ex-situ" sample with arsenic exclusively sorbed on the iron oxide nanoparticle surface. Generally, presented results highlight ferrate(VI) as one of the most promising candidates for advanced technologies of arsenic treatment mainly due to its environmentally friendly character, in situ applicability for treatment of both arsenites and arsenates, and contrary to all known competitive technologies, firmly bound part of arsenic preventing its leaching back to the environment. Moreover, As-containing γ-Fe2O3 nanoparticles are strongly magnetic allowing their separation from the environment by application of an external magnet.


Asunto(s)
Arseniatos/aislamiento & purificación , Arsenitos/aislamiento & purificación , Hierro/química , Nanopartículas de Magnetita/química , Arsénico/química , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Cinética , Nanopartículas de Magnetita/ultraestructura , Tamaño de la Partícula , Espectroscopía de Fotoelectrones , Espectroscopía de Mossbauer , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...