Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Aging Cell ; 23(4): e14077, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38303548

RESUMEN

Idiopathic Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta, which is associated with neuroinflammation and reactive gliosis. The underlying cause of PD and the concurrent neuroinflammation are not well understood. In this study, we utilize human and murine neuronal lines, stem cell-derived dopaminergic neurons, and mice to demonstrate that three previously identified genetic risk factors for PD, namely SATB1, MIR22HG, and GBA, are components of a single gene regulatory pathway. Our findings indicate that dysregulation of this pathway leads to the upregulation of glucocerebrosides (GluCer), which triggers a cellular senescence-like phenotype in dopaminergic neurons. Specifically, we discovered that downregulation of the transcriptional repressor SATB1 results in the derepression of the microRNA miR-22-3p, leading to decreased GBA expression and subsequent accumulation of GluCer. Furthermore, our results demonstrate that an increase in GluCer alone is sufficient to impair lysosomal and mitochondrial function, thereby inducing cellular senescence. Dysregulation of the SATB1-MIR22-GBA pathway, observed in both PD patients and normal aging, leads to lysosomal and mitochondrial dysfunction due to the GluCer accumulation, ultimately resulting in a cellular senescence-like phenotype in dopaminergic neurons. Therefore, our study highlights a novel pathway involving three genetic risk factors for PD and provides a potential mechanism for the senescence-induced neuroinflammation and reactive gliosis observed in both PD and normal aging.


Asunto(s)
Proteínas de Unión a la Región de Fijación a la Matriz , MicroARNs , Enfermedad de Parkinson , Humanos , Ratones , Animales , Neuronas Dopaminérgicas/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Glucosilceramidas/metabolismo , Gliosis , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Senescencia Celular/genética , Factores de Transcripción/metabolismo , Fenotipo
2.
bioRxiv ; 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37503189

RESUMEN

Idiopathic Parkinson's Disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta, which is associated with neuroinflammation and reactive gliosis. The underlying cause of PD and the concurrent neuroinflammation are not well understood. In this study, we utilized human and murine neuronal lines, stem cell-derived dopaminergic neurons, and mice to demonstrate that three previously identified genetic risk factors for PD, namely SATB1, MIR22HG, and GBA, are components of a single gene regulatory pathway. Our findings indicate that dysregulation of this pathway leads to the upregulation of glucocerebrosides (GluCer), which triggers a cellular senescence-like phenotype in dopaminergic neurons. Specifically, we discovered that downregulation of the transcriptional repressor SATB1 results in the derepression of the microRNA miR-22-3p, leading to decreased GBA expression and subsequent accumulation of GluCer. Furthermore, our results demonstrate that an increase in GluCer alone is sufficient to impair lysosomal and mitochondrial function, thereby inducing cellular senescence dependent on S100A9 and stress factors. Dysregulation of the SATB1-MIR22-GBA pathway, observed in both PD patients and normal aging, leads to lysosomal and mitochondrial dysfunction due to the GluCer accumulation, ultimately resulting in a cellular senescence-like phenotype in dopaminergic neurons. Therefore, our study highlights a novel pathway involving three genetic risk factors for PD and provides a potential mechanism for the senescence-induced neuroinflammation and reactive gliosis observed in both PD and normal aging.

3.
bioRxiv ; 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37034664

RESUMEN

Ongoing, first-in-human clinical trials illustrate the feasibility and translational potential of human pluripotent stem cell (hPSC)-based cell therapies in Parkinson's disease (PD). However, a major unresolved challenge in the field is the extensive cell death following transplantation with <10% of grafted dopamine neurons surviving. Here, we performed a pooled CRISPR/Cas9 screen to enhance survival of postmitotic dopamine neurons in vivo . We identified p53-mediated apoptotic cell death as major contributor to dopamine neuron loss and uncovered a causal link of TNFa-NFκB signaling in limiting cell survival. As a translationally applicable strategy to purify postmitotic dopamine neurons, we performed a cell surface marker screen that enabled purification without the need for genetic reporters. Combining cell sorting with adalimumab pretreatment, a clinically approved and widely used TNFa inhibitor, enabled efficient engraftment of postmitotic dopamine neurons leading to extensive re-innervation and functional recovery in a preclinical PD mouse model. Thus, transient TNFa inhibition presents a clinically relevant strategy to enhance survival and enable engraftment of postmitotic human PSC-derived dopamine neurons in PD. Highlights: In vivo CRISPR-Cas9 screen identifies p53 limiting survival of grafted human dopamine neurons. TNFα-NFκB pathway mediates p53-dependent human dopamine neuron deathCell surface marker screen to enrich human dopamine neurons for translational use. FDA approved TNF-alpha inhibitor rescues in vivo dopamine neuron survival with in vivo function.

4.
Elife ; 82019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31825307

RESUMEN

Open Science has changed research by making data accessible and shareable, contributing to replicability to accelerate and disseminate knowledge. However, for rodent cognitive studies the availability of tools to share and disseminate data is scarce. Automated touchscreen-based tests enable systematic cognitive assessment with easily standardised outputs that can facilitate data dissemination. Here we present an integration of touchscreen cognitive testing with an open-access database public repository (mousebytes.ca), as well as a Web platform for knowledge dissemination (https://touchscreencognition.org). We complement these resources with the largest dataset of age-dependent high-level cognitive assessment of mouse models of Alzheimer's disease, expanding knowledge of affected cognitive domains from male and female mice of three strains. We envision that these new platforms will enhance sharing of protocols, data availability and transparency, allowing meta-analysis and reuse of mouse cognitive data to increase the replicability/reproducibility of datasets.


Asunto(s)
Cognición/fisiología , Ciencia de los Animales de Laboratorio/instrumentación , Ciencia de los Animales de Laboratorio/métodos , Roedores , Enfermedad de Alzheimer , Animales , Conducta Animal , Conducta de Elección , Bases de Datos Factuales , Modelos Animales de Enfermedad , Femenino , Aprendizaje/fisiología , Masculino , Memoria/fisiología , Ratones , Pruebas Neuropsicológicas , Reproducibilidad de los Resultados , Roedores/genética , Programas Informáticos
5.
Cell Stem Cell ; 25(4): 514-530.e8, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31543366

RESUMEN

Cellular senescence is a mechanism used by mitotic cells to prevent uncontrolled cell division. As senescent cells persist in tissues, they cause local inflammation and are harmful to surrounding cells, contributing to aging. Generally, neurodegenerative diseases, such as Parkinson's, are disorders of aging. The contribution of cellular senescence to neurodegeneration is still unclear. SATB1 is a DNA binding protein associated with Parkinson's disease. We report that SATB1 prevents cellular senescence in post-mitotic dopaminergic neurons. Loss of SATB1 causes activation of a cellular senescence transcriptional program in dopamine neurons both in human stem cell-derived dopaminergic neurons and in mice. We observed phenotypes that are central to cellular senescence in SATB1 knockout dopamine neurons in vitro and in vivo. Moreover, we found that SATB1 directly represses expression of the pro-senescence factor p21 in dopaminergic neurons. Our data implicate senescence of dopamine neurons as a contributing factor in the pathology of Parkinson's disease.


Asunto(s)
Envejecimiento/fisiología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Neuronas Dopaminérgicas/fisiología , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Enfermedad de Parkinson/metabolismo , Animales , Células Cultivadas , Senescencia Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Represión Epigenética , Técnicas de Silenciamiento del Gen , Humanos , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Ratones , Ratones Noqueados , Mitosis , Enfermedad de Parkinson/genética , Unión Proteica
7.
Cereb Cortex ; 27(2): 1615-1628, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26803167

RESUMEN

Cholinergic dysfunction has been associated with cognitive abnormalities in a variety of neurodegenerative and neuropsychiatric diseases. Here we tested how information processing is regulated by cholinergic tone in genetically modified mice targeting the vesicular acetylcholine transporter (VAChT), a protein required for acetylcholine release. We measured long-term potentiation of Schaffer collateral-CA1 synapses in vivo and assessed information processing by using a mouse touchscreen version of paired associates learning task (PAL). Acquisition of information in the mouse PAL task correlated to levels of hippocampal VAChT, suggesting a critical role for cholinergic tone. Accordingly, synaptic plasticity in the hippocampus in vivo was disturbed, but not completely abolished, by decreased hippocampal cholinergic signaling. Disrupted forebrain cholinergic signaling also affected working memory, a result reproduced by selectively decreasing VAChT in the hippocampus. In contrast, spatial memory was relatively preserved, whereas reversal spatial memory was sensitive to decreased hippocampal cholinergic signaling. This work provides a refined roadmap of how synaptically secreted acetylcholine influences distinct behaviors and suggests that distinct forms of cognitive processing may be regulated in different ways by cholinergic activity.


Asunto(s)
Acetilcolina/metabolismo , Hipocampo/fisiología , Memoria a Corto Plazo/fisiología , Plasticidad Neuronal/fisiología , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo , Animales , Potenciación a Largo Plazo/fisiología , Ratones Transgénicos , Prosencéfalo/metabolismo , Memoria Espacial/fisiología , Sinapsis/metabolismo
8.
Cereb Cortex ; 27(7): 3553-3567, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27312991

RESUMEN

The relationship between long-term cholinergic dysfunction and risk of developing dementia is poorly understood. Here we used mice with deletion of the vesicular acetylcholine transporter (VAChT) in the forebrain to model cholinergic abnormalities observed in dementia. Whole-genome RNA sequencing of hippocampal samples revealed that cholinergic failure causes changes in RNA metabolism. Remarkably, key transcripts related to Alzheimer's disease are affected. BACE1, for instance, shows abnormal splicing caused by decreased expression of the splicing regulator hnRNPA2/B1. Resulting BACE1 overexpression leads to increased APP processing and accumulation of soluble Aß1-42. This is accompanied by age-related increases in GSK3 activation, tau hyperphosphorylation, caspase-3 activation, decreased synaptic markers, increased neuronal death, and deteriorating cognition. Pharmacological inhibition of GSK3 hyperactivation reversed deficits in synaptic markers and tau hyperphosphorylation induced by cholinergic dysfunction, indicating a key role for GSK3 in some of these pathological changes. Interestingly, in human brains there was a high correlation between decreased levels of VAChT and hnRNPA2/B1 levels with increased tau hyperphosphorylation. These results suggest that changes in RNA processing caused by cholinergic loss can facilitate Alzheimer's-like pathology in mice, providing a mechanism by which decreased cholinergic tone may increase risk of dementia.


Asunto(s)
Acetilcolina/metabolismo , Enfermedad de Alzheimer/patología , Regulación de la Expresión Génica/genética , Hipocampo/metabolismo , ARN/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/deficiencia , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Hipocampo/citología , Humanos , Discapacidades para el Aprendizaje/etiología , Discapacidades para el Aprendizaje/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN/genética , Tiazoles/farmacología , Factor Nuclear Tiroideo 1/genética , Factor Nuclear Tiroideo 1/metabolismo , Urea/análogos & derivados , Urea/farmacología , Proteínas de Transporte Vesicular de Acetilcolina/genética
9.
J Neurosci ; 36(23): 6287-96, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27277805

RESUMEN

UNLABELLED: Cholinergic vulnerability, characterized by loss of acetylcholine (ACh), is one of the hallmarks of Alzheimer's disease (AD). Previous work has suggested that decreased ACh activity in AD may contribute to pathological changes through global alterations in alternative splicing. This occurs, at least partially, via the regulation of the expression of a critical protein family in RNA processing, heterogeneous nuclear ribonucleoprotein (hnRNP) A/B proteins. These proteins regulate several steps of RNA metabolism, including alternative splicing, RNA trafficking, miRNA export, and gene expression, providing multilevel surveillance in RNA functions. To investigate the mechanism by which cholinergic tone regulates hnRNPA2/B1 expression, we used a combination of genetic mouse models and in vivo and in vitro techniques. Decreasing cholinergic tone reduced levels of hnRNPA2/B1, whereas increasing cholinergic signaling in vivo increased expression of hnRNPA2/B1. This effect was not due to decreased hnRNPA2/B1 mRNA expression, increased aggregation, or degradation of the protein, but rather to decreased mRNA translation by nonsense-mediated decay regulation of translation. Cell culture and knock-out mice experiments demonstrated that M1 muscarinic signaling is critical for cholinergic control of hnRNPA2/B1 protein levels. Our experiments suggest an intricate regulation of hnRNPA2/B1 levels by cholinergic activity that interferes with alternative splicing in targeted neurons mimicking deficits found in AD. SIGNIFICANCE STATEMENT: In Alzheimer's disease, degeneration of basal forebrain cholinergic neurons is an early event. These neurons communicate with target cells and regulate their long-term activity by poorly understood mechanisms. Recently, the splicing factor hnRNPA2/B, which is decreased in Alzheimer's disease, was implicated as a potential mediator of long-term cholinergic regulation. Here, we demonstrate a mechanism by which cholinergic signaling controls the translation of hnRNPA2/B1 mRNA by activation of M1 muscarinic type receptors. Loss of cholinergic activity can have profound effects in target cells by modulating hnRNPA2/B1 levels.


Asunto(s)
Agonistas Colinérgicos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Neuronas/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Receptor Muscarínico M1/metabolismo , Animales , Carbacol/farmacología , Células Cultivadas , Colina O-Acetiltransferasa/genética , Colina O-Acetiltransferasa/metabolismo , Colinérgicos/farmacología , Embrión de Mamíferos , Regulación de la Expresión Génica/genética , Hipocampo/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/efectos de los fármacos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factor Nuclear Tiroideo 1 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitinación/efectos de los fármacos , Ubiquitinación/genética , Proteínas de Transporte Vesicular de Acetilcolina/genética , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
10.
Dis Model Mech ; 8(11): 1457-66, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26398952

RESUMEN

Stress-inducible phosphoprotein I (STIP1, STI1 or HOP) is a co-chaperone intermediating Hsp70/Hsp90 exchange of client proteins, but it can also be secreted to trigger prion protein-mediated neuronal signaling. Some mothers of children with autism spectrum disorders (ASD) present antibodies against certain brain proteins, including antibodies against STIP1. Maternal antibodies can cross the fetus blood-brain barrier during pregnancy, suggesting the possibility that they can interfere with STIP1 levels and, presumably, functions. However, it is currently unknown whether abnormal levels of STIP1 have any impact in ASD-related behavior. Here, we used mice with reduced (50%) or increased STIP1 levels (fivefold) to test for potential ASD-like phenotypes. We found that increased STIP1 regulates the abundance of Hsp70 and Hsp90, whereas reduced STIP1 does not affect Hsp70, Hsp90 or the prion protein. Interestingly, BAC transgenic mice presenting fivefold more STIP1 show no major phenotype when examined in a series of behavioral tasks, including locomotor activity, elevated plus maze, Morris water maze and five-choice serial reaction time task (5-CSRTT). In contrast, mice with reduced STIP1 levels are hyperactive and have attentional deficits on the 5-CSRTT, but exhibit normal performance for the other tasks. We conclude that reduced STIP1 levels can contribute to phenotypes related to ASD. However, future experiments are needed to define whether it is decreased chaperone capacity or impaired prion protein signaling that contributes to these phenotypes.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Conducta Animal , Proteínas de Choque Térmico/deficiencia , Animales , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno por Déficit de Atención con Hiperactividad/psicología , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Masculino , Aprendizaje por Laberinto , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora , Fenotipo , Proteínas PrPC/metabolismo , Tiempo de Reacción , Natación , Factores de Tiempo
11.
Anim Reprod Sci ; 159: 212-6, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26149219

RESUMEN

Sperm storage is a common phenomenon in most female reptiles. Evidence of sperm storage is based on the observation that female fertilization occurs even when females are separated from males, as well as the presence of agglomerates of spermatozoa in specific regions of the oviducts. Lizards are capable of storing sperm in the uterine tube, vagina, or in both regions. However, representatives of the Gekkonidae family commonly store spermatozoa in the uterine tube, which is considered an ancestral character state for Squamates. Using comparative techniques of light, transmission and scanning electron microscopy, we observed stored sperm organized in compact bundles with their heads facing the bottom of the crypts of the uterine tube, indicating chemotactic attraction. The alignment and packing of spermatozoa in Hemidactylus mabouia indicates that the process of evacuation of the crypts for fertilization may be related to the passage of the egg that exerts mechanical pressure against the walls of the uterine tube, causing its distension and the release of spermatozoa. We conclude that the sperm storage region and the morphological organization of the crypts in the uterine tube of H. mabouia is similar to other previously studied species of lizards, supporting the notion that sperm storage is a common reproductive strategy among female reptiles.


Asunto(s)
Reproducción/fisiología , Reptiles/anatomía & histología , Espermatozoides/fisiología , Animales , Trompas Uterinas/fisiología , Femenino , Fertilización/fisiología , Masculino , Microscopía Electrónica de Transmisión , Espermatozoides/ultraestructura
12.
Br J Pharmacol ; 172(20): 4919-31, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26222090

RESUMEN

BACKGROUND AND PURPOSE: Disruptions of executive function, including attentional deficits, are a hallmark of a number of diseases. ACh in the prefrontal cortex regulates attentive behaviour; however, the role of α7 nicotinic ACh receptor (α7nAChR) in attention is contentious. EXPERIMENTAL APPROACH: In order to probe attention, we trained both wild-type and α7nAChR knockout mice on a touch screen-based five-choice serial reaction time task (5-CSRT). Following training procedures, we then tested sustained attention using a probe trial experiment. To further differentiate the role of specific nicotinic receptors in attention, we then tested the effects of both α7nAChR and ß2nAChR agonists on the performance of both wild-type and knockout mice on the 5-CSRT task. KEY RESULTS: At low doses, α7nAChR agonists improved attentional performance of wild-type mice, while high doses had deleterious effects on attention. α7nAChR knockout mice displayed deficits in sustained attention that were not ameliorated by α7nAChR agonists. However, these deficits were completely reversed by the administration of a ß2nAChR agonist. Furthermore, administration of a ß2nAChR agonist in α7nAChR knockout mice elicited similar biochemical response in the prefrontal cortex as the administration of α7nAChR agonists in wild-type mice. CONCLUSIONS AND IMPLICATIONS: Our experiments reveal an intricate relationship between distinct nicotinic receptors to regulate attentional performance and provide the basis for targeting ß2nAChRs pharmacologically to decrease attentional deficits due to a dysfunction in α7nAChRs.


Asunto(s)
Atención/fisiología , Receptores Nicotínicos/fisiología , Receptor Nicotínico de Acetilcolina alfa 7/fisiología , Animales , Atención/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Isoxazoles/farmacología , Masculino , Ratones Noqueados , Agonistas Nicotínicos/farmacología , Pirrolidinas/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Receptor Nicotínico de Acetilcolina alfa 7/deficiencia
13.
J Neurosci ; 33(37): 14908-20, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-24027290

RESUMEN

One of the key brain regions in cognitive processing and executive function is the prefrontal cortex (PFC), which receives cholinergic input from basal forebrain cholinergic neurons. We evaluated the contribution of synaptically released acetylcholine (ACh) to executive function by genetically targeting the vesicular acetylcholine transporter (VAChT) in the mouse forebrain. Executive function was assessed using a pairwise visual discrimination paradigm and the 5-choice serial reaction time task (5-CSRT). In the pairwise test, VAChT-deficient mice were able to learn, but were impaired in reversal learning, suggesting that these mice present cognitive inflexibility. Interestingly, VAChT-targeted mice took longer to reach criteria in the 5-CSRT. Although their performance was indistinguishable from that of control mice during low attentional demand, increased attentional demand revealed striking deficits in VAChT-deleted mice. Galantamine, a cholinesterase inhibitor used in Alzheimer's disease, significantly improved the performance of control mice, but not of VAChT-deficient mice on the 5-CSRT. In vivo magnetic resonance spectroscopy showed altered levels of two neurochemical markers of neuronal function, taurine and lactate, suggesting altered PFC metabolism in VAChT-deficient mice. The PFC of these mice displayed a drastic reduction in the splicing factor heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1), whose cholinergic-mediated reduction was previously demonstrated in Alzheimer's disease. Consequently, several key hnRNPA2/B1 target transcripts involved in neuronal function present changes in alternative splicing in VAChT-deficient mice, including pyruvate kinase M, a key enzyme involved in lactate metabolism. We propose that VAChT-targeted mice can be used to model and to dissect the neurochemical basis of executive abnormalities.


Asunto(s)
Trastornos del Conocimiento/genética , Trastornos del Conocimiento/patología , Función Ejecutiva/fisiología , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Empalme del ARN/genética , Proteínas de Transporte Vesicular de Acetilcolina/deficiencia , Acetilcolina/metabolismo , Animales , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Conducta de Elección/efectos de los fármacos , Conducta de Elección/fisiología , Colina/metabolismo , Inhibidores de la Colinesterasa/farmacología , Trastornos del Conocimiento/tratamiento farmacológico , Galantamina/farmacología , Inositol/metabolismo , Ácido Láctico/metabolismo , Locomoción/efectos de los fármacos , Locomoción/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Estimulación Luminosa , Corteza Prefrontal/efectos de los fármacos , Desempeño Psicomotor/efectos de los fármacos , Taurina/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/genética
14.
J Neurosci ; 33(25): 10427-38, 2013 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-23785154

RESUMEN

Acetylcholine (ACh) is an important neuromodulator in the nervous system implicated in many forms of cognitive and motor processing. Recent studies have used bacterial artificial chromosome (BAC) transgenic mice expressing channelrhodopsin-2 (ChR2) protein under the control of the choline acetyltransferase (ChAT) promoter (ChAT-ChR2-EYFP) to dissect cholinergic circuit connectivity and function using optogenetic approaches. We report that a mouse line used for this purpose also carries several copies of the vesicular acetylcholine transporter gene (VAChT), which leads to overexpression of functional VAChT and consequently increased cholinergic tone. We demonstrate that these mice have marked improvement in motor endurance. However, they also present severe cognitive deficits, including attention deficits and dysfunction in working memory and spatial memory. These results suggest that increased VAChT expression may disrupt critical steps in information processing. Our studies demonstrate that ChAT-ChR2-EYFP mice show altered cholinergic tone that fundamentally differentiates them from wild-type mice.


Asunto(s)
Atención/fisiología , Colina O-Acetiltransferasa/genética , Colina O-Acetiltransferasa/metabolismo , Cognición/fisiología , Resistencia Física/genética , Resistencia Física/fisiología , Animales , Ansiedad/psicología , Western Blotting , Channelrhodopsins , Técnica del Anticuerpo Fluorescente , Prueba de Tolerancia a la Glucosa , Fuerza de la Mano/fisiología , Suspensión Trasera , Aprendizaje por Laberinto/fisiología , Metabolismo/genética , Metabolismo/fisiología , Ratones , Ratones Transgénicos , Sistema Nervioso Parasimpático/fisiología , Reacción en Cadena de la Polimerasa , Equilibrio Postural/fisiología , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Natación/fisiología , Proteínas de Transporte Vesicular de Acetilcolina/genética , Proteínas de Transporte Vesicular de Acetilcolina/fisiología
15.
Biochem J ; 450(2): 265-74, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23410039

RESUMEN

Acetylcholine, the first chemical to be identified as a neurotransmitter, is packed in synaptic vesicles by the activity of VAChT (vesicular acetylcholine transporter). A decrease in VAChT expression has been reported in a number of diseases, and this has consequences for the amount of acetylcholine loaded in synaptic vesicles as well as for neurotransmitter release. Several genetically modified mice targeting the VAChT gene have been generated, providing novel models to understand how changes in VAChT affect transmitter release. A surprising finding is that most cholinergic neurons in the brain also can express a second type of vesicular neurotransmitter transporter that allows these neurons to secrete two distinct neurotransmitters. Thus a given neuron can use two neurotransmitters to regulate different physiological functions. In addition, recent data indicate that non-neuronal cells can also express the machinery used to synthesize and release acetylcholine. Some of these cells rely on VAChT to secrete acetylcholine with potential physiological consequences in the periphery. Hence novel functions for the oldest neurotransmitter known are emerging with the potential to provide new targets for the treatment of several pathological conditions.


Asunto(s)
Proteínas de Transporte Vesicular de Acetilcolina/metabolismo , Acetilcolina/metabolismo , Animales , Humanos , Ratones , Neuronas/metabolismo , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...