Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Beilstein J Nanotechnol ; 4: 588-602, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24205453

RESUMEN

Plasmonic resonances in metallic nano-triangles have been investigated by irradiating these structures with short laser pulses and imaging the resulting ablation and melting patterns. The triangular gold structures were prepared on Si substrates and had a thickness of 40 nm and a side length of ca. 500 nm. Irradiation was carried out with single femtosecond and picosecond laser pulses at a wavelength of 800 nm, which excited higher order plasmon modes in these triangles. The ablation distribution as well as the local melting of small parts of the nanostructures reflect the regions of large near-field enhancement. The observed patterns are reproduced in great detail by FDTD simulations with a 3-dimensional model, provided that the calculations are not based on idealized, but on realistic structures. In this realistic model, details like the exact shape of the triangle edges and the dielectric environment of the structures are taken into account. The experimental numbers found for the field enhancement are typically somewhat smaller than the calculated ones. The results demonstrate the caveats for FDTD simulations and the potential and the limitations of "near field photography" by local ablation and melting for the mapping of complex plasmon fields and their applications.

2.
Beilstein J Nanotechnol ; 3: 674-83, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23213631

RESUMEN

Regular arrays of metallic nano-triangles - so called Fischer patterns - are fabricated by nano-sphere lithography. We studied such gold nano-triangle arrays on silicon or glass substrates. A series of different samples was investigated with a parabolic mirror based confocal microscope where the sample is scanned through the laser focus. By employing higher order laser modes (azimuthally and radially polarised laser beams), we can excite the Fischer patterns using either a pure in-plane (x,y) electric field or a strongly z-directional (optical axis of the optical microscope) electric field. We collected and evaluated the emitted luminescence and thereby investigated the respectively excited plasmonic modes. These varied considerably: firstly with the light polarisation in the focus, secondly with the aspect ratio of the triangles and thirdly with the employed substrate. Moreover, we obtained strongly enhanced Raman spectra of an adenine (sub-)monolayer on gold Fischer patterns on glass. We thus showed that gold Fischer patterns are promising surface-enhanced Raman scattering (SERS) substrates.

3.
Opt Express ; 20(20): 22063-78, 2012 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-23037356

RESUMEN

When exposing small particles on a substrate to a light plane wave, the scattered optical near field is spatially modulated and highly complex. We show, for the particular case of dielectric microspheres, that it is possible to image these optical near-field distributions in a quantitative way. By placing a single microsphere on a thin film of the photosensitive phase change material Ge(2)Sb(5)Te(5) and exposing it to a single short laser pulse, the spatial intensity modulation of the near field is imprinted into the film as a pattern of different material phases. The resulting patterns are investigated by using optical as well as high-resolution scanning electron microscopy. Quantitative information on the local optical near field at each location is obtained by calibrating the material response to pulsed laser irradiation. We discuss the influence of polarization and angle of incidence of the laser beam as well as particle size on the field distribution. The experimental results are in good quantitative agreement with a model based on a rigorous solution of Maxwell's equations. Our results have potential application to near-field optical lithography and experimental determination of near fields in complex nanostructures.


Asunto(s)
Luz , Modelos Teóricos , Imagen Molecular/métodos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Simulación por Computador , Dispersión de Radiación
4.
Langmuir ; 28(24): 9041-6, 2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-22429023

RESUMEN

The quantitative determination of the strength of the near-field enhancement in and around nanostructures is essential for optimizing and using these structures for applications. We combine the gaussian intensity distribution of a laser profile and two-photon-polymerization of SU-8 to a suitable tool for the quantitative experimental measurement of the near-field enhancement of a nanostructure. Our results give a feedback to the results obtained by finite-difference time-domain (FDTD) simulations. The structures under investigation are gold nanotriangles on a glass substrate with 85 nm side length and a thickness of 40 nm. We compare the threshold fluence for polymerization for areas of the gaussian intensity profile with and without the near-field enhancement of the nanostructures. The experimentally obtained value of the near-field intensity enhancement is 600 ± 140, independent of the laser power, irradiation time, and spot size. The FDTD simulation shows a pointlike maximum of 2600 at the tip. In a more extended area with an approximate size close to the smallest polymerized structure of 25 nm in diameter, we find a value between 800 and 600. Using our novel approach, we determine the threshold fluence for polymerization of the commercially available photopolymerizable resin SU-8 by a femtosecond laser working at a wavelength of 795 nm and a repetition rate of 82 MHz to be 0.25 J/cm(2) almost independent of the irradiation time and the laser power used. This finding is important for future applications of the method because it enables one to use varying laser systems.


Asunto(s)
Compuestos Epoxi/química , Nanoestructuras/química , Fotones , Polímeros/química , Tamaño de la Partícula , Polimerizacion , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA