Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37160315

RESUMEN

Following chemotherapy, a mediastinal germ cell tumor can lead to a mature teratoma that is composed of tissues derived from all three germ layers. Although teratoma is usually curable, in rare cases it can give rise to various somatic tumors and exceptionally it undergoes melanocytic neuroectodermal tumor (MNT) transformation, a process that is not well-described. We report a patient with a postchemotherapy thymic teratoma associated with an MNT component who, 10 years later, additionally presented a vertebral metastasis corresponding to an anaplastic MNT. Using exome sequencing of the mature teratoma, the MNT and its metastatic vertebral anaplastic MNT components, we identified 19 somatic mutations shared by at least two components. Six mutations were common to all three components, and three of them were located in the known cancer-related genes KRAS (p.E63K), TP53 (p.P222X), and POLQ (p.S447P). Gene set enrichment analysis revealed that the melanoma tumorigenesis pathway was enriched in mutated genes including the four major driver genes KRAS, TP53, ERBB4, and KDR, indicating that these genes may be involved in the development of the anaplastic MNT transformation of the teratoma. To our knowledge, this is the first molecular study realized on MNT. Understanding the clinicopathological and molecular characteristics of these tumors is essential to better understand their development and to improve therapeutics.


Asunto(s)
Neoplasias de Células Germinales y Embrionarias , Tumores Neuroectodérmicos , Teratoma , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Teratoma/genética , Genómica
3.
Am J Hum Genet ; 104(2): 319-330, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30639322

RESUMEN

ZMIZ1 is a coactivator of several transcription factors, including p53, the androgen receptor, and NOTCH1. Here, we report 19 subjects with intellectual disability and developmental delay carrying variants in ZMIZ1. The associated features include growth failure, feeding difficulties, microcephaly, facial dysmorphism, and various other congenital malformations. Of these 19, 14 unrelated subjects carried de novo heterozygous single-nucleotide variants (SNVs) or single-base insertions/deletions, 3 siblings harbored a heterozygous single-base insertion, and 2 subjects had a balanced translocation disrupting ZMIZ1 or involving a regulatory region of ZMIZ1. In total, we identified 13 point mutations that affect key protein regions, including a SUMO acceptor site, a central disordered alanine-rich motif, a proline-rich domain, and a transactivation domain. All identified variants were absent from all available exome and genome databases. In vitro, ZMIZ1 showed impaired coactivation of the androgen receptor. In vivo, overexpression of ZMIZ1 mutant alleles in developing mouse brains using in utero electroporation resulted in abnormal pyramidal neuron morphology, polarization, and positioning, underscoring the importance of ZMIZ1 in neural development and supporting mutations in ZMIZ1 as the cause of a rare neurodevelopmental syndrome.


Asunto(s)
Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Mutación Puntual , Factores de Transcripción/genética , Alelos , Animales , Niño , Preescolar , Discapacidades del Desarrollo/patología , Femenino , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , Ratones , Síndrome , Factores de Transcripción/química , Factores de Transcripción/metabolismo
4.
J Clin Invest ; 127(11): 4090-4103, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28972538

RESUMEN

Shwachman-Diamond syndrome (SDS) (OMIM #260400) is a rare inherited bone marrow failure syndrome (IBMFS) that is primarily characterized by neutropenia and exocrine pancreatic insufficiency. Seventy-five to ninety percent of patients have compound heterozygous loss-of-function mutations in the Shwachman-Bodian-Diamond syndrome (sbds) gene. Using trio whole-exome sequencing (WES) in an sbds-negative SDS family and candidate gene sequencing in additional SBDS-negative SDS cases or molecularly undiagnosed IBMFS cases, we identified 3 independent patients, each of whom carried a de novo missense variant in srp54 (encoding signal recognition particle 54 kDa). These 3 patients shared congenital neutropenia linked with various other SDS phenotypes. 3D protein modeling revealed that the 3 variants affect highly conserved amino acids within the GTPase domain of the protein that are critical for GTP and receptor binding. Indeed, we observed that the GTPase activity of the mutated proteins was impaired. The level of SRP54 mRNA in the bone marrow was 3.6-fold lower in patients with SRP54-mutations than in healthy controls. Profound reductions in neutrophil counts and chemotaxis as well as a diminished exocrine pancreas size in a SRP54-knockdown zebrafish model faithfully recapitulated the human phenotype. In conclusion, autosomal dominant mutations in SRP54, a key member of the cotranslation protein-targeting pathway, lead to syndromic neutropenia with a Shwachman-Diamond-like phenotype.


Asunto(s)
Enfermedades de la Médula Ósea/genética , Insuficiencia Pancreática Exocrina/genética , Lipomatosis/genética , Neutropenia/congénito , Partícula de Reconocimiento de Señal/genética , Animales , Niño , Síndromes Congénitos de Insuficiencia de la Médula Ósea , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Masculino , Modelos Moleculares , Neutropenia/genética , Páncreas Exocrino/metabolismo , Fenotipo , Dominios Proteicos , Síndrome de Shwachman-Diamond , Partícula de Reconocimiento de Señal/química , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...