Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33926116

RESUMEN

The protein eL38 is one of the smallest proteins of the mammalian ribosome, which is a component of its large (60S) subunit. The haploinsufficiency of eL38 in mice leads to the Tail-short mutant phenotype characterized by defects in the development of the axial skeleton caused by the poor translation of mRNA subsets of Hox genes. Using the ribosome profiling assay applied to HEK293 cells knocked down of eL38, we examined the effects of the lack of eL38 in 60S subunits on gene expression at the level of translation. A four-fold decrease in the cell content of eL38 was shown to result in significant changes in the translational efficiencies of 150 genes. Among the genes, whose expression at the level of translation was enhanced, there were mainly those associated with basic metabolic processes; namely, translation, protein folding, chromosome organization, splicing, and others. The set of genes with reduced translation efficiencies contained those that are mostly involved in the processes related to the regulation of transcription, including the activation of Hox genes. Thus, we demonstrated that eL38 insufficiency significantly affects the expression of certain genes at the translational level. Our findings facilitate understanding the possible causes of some anomalies in eL38-deficient animals.


Asunto(s)
Regulación de la Expresión Génica/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Expresión Génica/genética , Células HEK293 , Humanos , Biosíntesis de Proteínas , ARN Mensajero/genética , Subunidades Ribosómicas Grandes de Eucariotas/genética , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Ribosomas/metabolismo , Transcriptoma/genética
2.
Biochimie ; 184: 132-142, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33675855

RESUMEN

The ribosomal protein eL38 is a component of the mammalian translation machine. The deletion of the Rpl38 locus in mice results in the Tail-short (Ts) mutant phenotype characterized by a shortened tail and other defects in the axial skeleton development. Here, using the next-generation sequencing of total RNA from HEK293 cells knocked down of eL38 mRNA by transfection with specific siRNAs, we examined the effect of reduced eL38 content on genomic transcription. An approximately 4-fold decrease in the level of eL38 was shown to cause changes in the expression of nearly 1500 genes. Among the down-regulated genes, there were those responsible for p53 activity, Ca2+ metabolism and several signaling processes, as well as genes involved in the organization and functioning of the cytoskeleton. The genes related to rRNA processing and translation, along with many others, including those whose dysregulation is associated with developmental disorders, turned out to be up-regulated. Thus, we demonstrated that the decreased RPL38 expression leads to a significant reorganization of genomic transcription. Our findings suggest a possible link between the balance of eL38 and genes implicated in osteogenesis, thereby contributing to the elucidation of the reasons for the appearance of the above Ts mutant phenotype in animals.


Asunto(s)
Genoma Humano , ARN Mensajero/metabolismo , Proteínas Ribosómicas/metabolismo , Transcripción Genética , Células HEK293 , Humanos , ARN Mensajero/genética , Proteínas Ribosómicas/genética
3.
Biochimie ; 177: 68-77, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32798643

RESUMEN

The balance of ribosomal proteins is important for the assembly of ribosomal subunits and cell viability. The synthesis of ribosomal proteins in a eukaryotic cell is controlled by various mechanisms, including autoregulation, which so far has been revealed for only a few of these proteins. We applied the photoactivatable 4-thiouridine-enhanced cross-linking and immunoprecipitation assay to HEK293T cells overproducing FLAG-labeled human ribosomal protein eL29 (eL29FLAG) to determine which RNAs other than rRNA interact with eL29. We demonstrated that eL29FLAG was incorporated into 60S subunits, and that ribosomes with those containing eL29FLAG were competent in translation. Analysis of the next generation sequencing data obtained from a DNA library derived from RNA fragments with covalently attached eL29FLAG peptide residues showed that the protein was cross-linked to the mRNA of the eL29-coding gene, which turned out to be its only major RNA target. The eL29FLAG cross-linking sites were located in the 3' part of the mRNA coding sequence (CDS). A specific helix that mimics the eL29 binding site on 28S rRNA was proposed as a site that is recognized by the protein upon its binding to the cognate mRNA. In addition, it was found that both eL29FLAG mRNA and eL29 mRNA, unlike those of other ribosomal proteins, were co-immunoprecipitated with eL29FLAG from the ribosome-depleted cell lysate, and recombinant eL29 inhibited the translation of the eL29 mRNA CDS transcript in a cell-free system. All this suggests that human eL29 regulates its own synthesis via a feedback mechanism by binding to the cognate mRNA, preventing its translation.


Asunto(s)
ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Sitios de Unión , Regulación de la Expresión Génica , Biblioteca de Genes , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunoprecipitación , Modelos Moleculares , Sistemas de Lectura Abierta , Biosíntesis de Proteínas/fisiología , ARN Mensajero/química , ARN Ribosómico/metabolismo , ARN Ribosómico 28S/metabolismo , Proteínas de Unión al ARN/química , Proteínas Ribosómicas/química , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Ribosomas/metabolismo
4.
Cells ; 9(5)2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32429214

RESUMEN

An imbalance in the synthesis of ribosomal proteins can lead to the disruption of various cellular processes. For mammalian cells, it has been shown that the level of the eukaryote-specific ribosomal protein eL29, also known as the one interacting with heparin/heparan sulfate, substantially affects their growth. Moreover, in animals lacking this protein, a number of anatomical abnormalities have been observed. Here, we applied next-generation RNA sequencing to HEK293 cells transfected with siRNAs specific for the mRNA of eL29 to determine what changes occur in the transcriptome profile with a decrease in the level of the target protein. We showed that an approximately 2.5-fold decrease in the content of eL29 leads to statistically significant changes in the expression of more than a thousand genes at the transcription level, without a noticeable effect on cell viability, rRNA level, and global translation. The set of eL29-dependent genes included both up-regulated and down-regulated ones, among which there are those previously identified as targets for proteins implicated in oncogenesis. Thus, our findings demonstrate that an insufficiency of eL29 in mammalian cells causes a significant reorganization of gene expression, thereby highlighting the relationship between the cellular balance of eL29 and the activities of certain genes.


Asunto(s)
Regulación de la Expresión Génica , Mamíferos/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Transcripción Genética , Animales , Técnicas de Silenciamiento del Gen , Ontología de Genes , Células HEK293 , Humanos , Proteínas Proto-Oncogénicas c-myc/metabolismo , RNA-Seq , Transcriptoma , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA