Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Genomics ; 19(3): 163-172, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29606903

RESUMEN

BACKGROUND: Postzygotic chromosomal variation in neuronal cells is hypothesized to make a substantial contribution to the etiology and pathogenesis of neuropsychiatric disorders. However, the role of somatic genome instability and mosaic genome variations in common mental illnesses is a matter of conjecture. MATERIALS AND METHODS: To estimate the pathogenic burden of somatic chromosomal mutations, we determined the frequency of mosaic aneuploidy in autopsy brain tissues of subjects with schizophrenia and other psychiatric disorders (intellectual disability comorbid with autism spectrum disorders). Recently, post-mortem brain tissues of subjects with schizophrenia, intellectual disability and unaffected controls were analyzed by Interphase Multicolor FISH (MFISH), Quantitative Fluorescent in situ Hybridization (QFISH) specially designed to register rare mosaic chromosomal mutations such as lowlevel aneuploidy (whole chromosome mosaic deletion/duplication). The low-level mosaic aneuploidy in the diseased brain demonstrated significant 2-3-fold frequency increase in schizophrenia (p=0.0028) and 4-fold increase in intellectual disability comorbid with autism (p=0.0037) compared to unaffected controls. Strong associations of low-level autosomal/sex chromosome aneuploidy (p=0.001, OR=19.0) and sex chromosome-specific mosaic aneuploidy (p=0.006, OR=9.6) with schizophrenia were revealed. CONCLUSION: Reviewing these data and literature supports the hypothesis suggesting that an association of low-level mosaic aneuploidy with common and, probably, overlapping psychiatric disorders does exist. Accordingly, we propose a pathway for common neuropsychiatric disorders involving increased burden of rare de novo somatic chromosomal mutations manifesting as low-level mosaic aneuploidy mediating local and general brain dysfunction.

2.
Mol Cytogenet ; 7(1): 20, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24602248

RESUMEN

BACKGROUND: Although the link between brain aging and Alzheimer's disease (AD) is a matter of debate, processes hallmarking cellular and tissue senescence have been repeatedly associated with its pathogenesis. Here, we have studied X chromosome aneuploidy (a recognized feature of aged cell populations) in the AD brain. RESULTS: Extended molecular neurocytogenetic analyses of X chromosome aneuploidy in 10 female AD as well as 10 age and sex matched female control postmortem brain samples was performed by multiprobe/quantitative FISH. Additionally, aneuploidy rate in the brain samples of 5 AD and as 5 age and sex matched control subjects were analyzed by interphase chromosome-specific multicolor banding (ICS-MCB). Totally, 182,500 cells in the AD brain and 182,500 cells in the unaffected brain were analyzed. The mean rate of X chromosome aneuploidy in AD samples was approximately two times higher than in control (control: mean - 1.32%, 95% CI 0.92- 1.71%; AD: mean - 2.79%, 95% CI 1.88-3.69; P = 0.013). One AD sample demonstrated mosaic aneuploidy of chromosome X confined to the hippocampus affecting about 10% of cells. ICS-MCB confirmed the presence of X chromosome aneuploidy in the hippocampal tissues of AD brain (control: mean - 1.74%, 95% CI 1.38- 2.10%; AD: mean - 4.92%, 95% CI 1.14-8.71; P < 0.001). CONCLUSIONS: Addressing X chromosome number variation in the brain, we observed that somatically acquired (post-zygotic) aneuploidy causes large-scale genomic alterations in neural cells of AD patients and, therefore, can be involved in pathogenesis of this common neurodegenerative disorder. In the context of debates about possible interplay between brain aging and AD neurodegeneration, our findings suggest that X chromosome aneuploidy can contribute to both processes. To this end we conclude that mosaic aneuploidy in the brain is a new non-heritable genetic factor predisposing to AD.

3.
Hum Mol Genet ; 18(14): 2656-69, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19414482

RESUMEN

Ataxia telangiectasia (AT) is a chromosome instability (CIN) neurological syndrome arising from DNA damage response defects due to ATM gene mutations. The hallmark of AT is progressive cerebellar degeneration. However, the intrinsic cause of the neurodegeneration remains poorly understood. To highlight the relationship between CIN and neurodegeneration in AT, we monitored aneuploidy and interphase chromosome breaks (chromosomal biomarkers of genomic instability) in the normal and diseased brain. We observed a 2-3-fold increase of stochastic aneuploidy affecting different chromosomes in the cerebellum and the cerebrum of the AT brain. The global aneuploidization of the brain is, therefore, a new genetic phenomenon featuring AT. Degenerating cerebellum in AT was remarkably featured by a dramatic 5-20-fold increase of non-random DNA double-strand breaks and aneuploidy affecting chromosomes 14 and, to a lesser extend, chromosomes 7 and X. Novel recurrent chromosome hot spots associated with cerebellar degeneration were mapped within 14q12. In silico analysis has revealed that this genomic region contains two candidate genes (FOXG1B and NOVA1). The existence of non-random breaks disrupting specific chromosomal loci in neural cells with DNA repair deficiency supports the hypothesis that neuronal genome may undergo programmed somatic rearrangements. Investigating chromosome integrity in neural cells, we provide the first evidence that increased CIN can result into neurodegeneration, whereas it is generally assumed to be associated with cancer. Our data suggest that mosaic instability of somatic genome in cells of the central nervous system is more significant genetic factor predisposing to the brain pathology than previously recognized.


Asunto(s)
Ataxia Telangiectasia/genética , Cerebelo/fisiopatología , Inestabilidad Cromosómica , Neuronas/fisiología , Adulto , Aneuploidia , Ataxia Telangiectasia/fisiopatología , Estudios de Casos y Controles , Rotura Cromosómica , Cromosomas Humanos Par 14/genética , Femenino , Inestabilidad Genómica , Humanos , Masculino , Adulto Joven
4.
Mol Cytogenet ; 1: 13, 2008 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-18564437

RESUMEN

BACKGROUND: Autosomal monosomies in human are generally suggested to be incompatible with life; however, there is quite a number of cytogenetic reports describing full monosomy of one chromosome 21 in live born children. Here, we report a cytogenetically similar case associated with congenital malformation including mental retardation, motor development delay, craniofacial dysmorphism and skeletal abnormalities. RESULTS: Initially, a full monosomy of chromosome 21 was suspected as only 45 chromosomes were present. However, molecular cytogenetics revealed a de novo unbalanced translocation with a der(7)t(7;21). It turned out that the translocated part of chromosome 21 produced GTG-banding patterns similar to original ones of chromosome 7. The final karyotype was described as 45,XX,der(7)t(7;21)(q34;q22.13),-21. As a meta analysis revealed that clusters of the olfactory receptor gene family (ORF) are located in these breakpoint regions, an involvement of OFR in the rearrangement formation is discussed here. CONCLUSION: The described clinical phenotype is comparable to previously described cases with ring chromosome 21, and a number of cases with del(7)(q34). Thus, at least a certain percentage, if not all full monosomy of chromosome 21 in live-borns are cases of unbalanced translocations involving chromosome 21.

5.
Schizophr Res ; 98(1-3): 139-47, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17889509

RESUMEN

OBJECTIVE: Genetic instability manifested as loss or gain of whole chromosomes (aneuploidy) is a newly described feature of the human brain. Aneuploidy in the brain was hypothesized to be involved in schizophrenia pathogenesis. To gain further insights into the relationship between aneuploidy in the brain and schizophrenia pathogenesis, a molecular-cytogenetic study of chromosome 1 aneuploidy was performed. METHODS: Interphase multiprobe fluorescence in situ hybridization (FISH) with quantitative FISH (QFISH) and interphase chromosome-specific multicolor banding (ICS-MCB) were used to define aneuploidy rate in 12 unaffected and 12 schizophrenia brains. RESULTS: In the unaffected brain (n=12; 22,794 cells analyzed), average frequencies of stochastic chromosome 1 loss and gain were 0.3% (95%CI 0.2-0.4%) and 0.3% (95%CI 0.2-0.4%), respectively. The threshold level for stochastic chromosome gain and loss (the mean+3SD) in the normal brain was 0.7%. Average rate of aneuploidy in the schizophrenia brain (n=12; 28,482 cells analyzed) was 0.9% (95%CI 0.3-1.5%) for chromosome 1 loss and 0.9% (95%CI 0.2-1.7%) for chromosome 1 gain. Significantly increased level of mosaic aneuploidy involving chromosome 1 was revealed in two schizophrenia brains (3.6% and 4.7% of cells with chromosome 1 loss and gain, respectively). Stochastic aneuploidy rate for chromosome 1 in the schizophrenia brain without two outliers (n=10) reached 0.6% (95%CI 0.3-0.9%) for loss and 0.5% (0.2-0.9%) for gain and was higher than in controls (P=0.005 and P=0.001, respectively). CONCLUSIONS: Our findings support the hypothesis suggesting that subtle genomic imbalances manifesting as low-level mosaic aneuploidy may contribute to schizophrenia pathogenesis.


Asunto(s)
Aneuploidia , Encéfalo/metabolismo , Cromosomas Humanos Par 1/genética , Mosaicismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Edad de Inicio , Cromosomas Humanos Par 1/metabolismo , Grupos Control , Femenino , Inestabilidad Genómica/genética , Humanos , Hibridación Fluorescente in Situ/métodos , Masculino , Persona de Mediana Edad , Procesos Estocásticos
6.
PLoS One ; 2(6): e558, 2007 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-17593959

RESUMEN

BACKGROUND: Understanding the mechanisms underlying generation of neuronal variability and complexity remains the central challenge for neuroscience. Structural variation in the neuronal genome is likely to be one important mechanism for neuronal diversity and brain diseases. Large-scale genomic variations due to loss or gain of whole chromosomes (aneuploidy) have been described in cells of the normal and diseased human brain, which are generated from neural stem cells during intrauterine period of life. However, the incidence of aneuploidy in the developing human brain and its impact on the brain development and function are obscure. METHODOLOGY/PRINCIPAL FINDINGS: To address genomic variation during development we surveyed aneuploidy/polyploidy in the human fetal tissues by advanced molecular-cytogenetic techniques at the single-cell level. Here we show that the human developing brain has mosaic nature, being composed of euploid and aneuploid neural cells. Studying over 600,000 neural cells, we have determined the average aneuploidy frequency as 1.25-1.45% per chromosome, with the overall percentage of aneuploidy tending to approach 30-35%. Furthermore, we found that mosaic aneuploidy can be exclusively confined to the brain. CONCLUSIONS/SIGNIFICANCE: Our data indicates aneuploidization to be an additional pathological mechanism for neuronal genome diversification. These findings highlight the involvement of aneuploidy in the human brain development and suggest an unexpected link between developmental chromosomal instability, intercellural/intertissular genome diversity and human brain diseases.


Asunto(s)
Aneuploidia , Encéfalo/embriología , Encéfalo/ultraestructura , Bandeo Cromosómico , Feto , Humanos , Hibridación Fluorescente in Situ , Mosaicismo , Plasticidad Neuronal
7.
J Histochem Cytochem ; 53(3): 375-80, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15750024

RESUMEN

Numerical chromosomal imbalances are a common feature of spontaneous abortions. However, the incidence of mosaic forms of chromosomal abnormalities has not been evaluated. We have applied interphase multicolor fluorescence in situ hybridization using original DNA probes for chromosomes 1, 9, 13, 14, 15, 16, 18, 21, 22, X, and Y to study chromosomal abnormalities in 148 specimens of spontaneous abortions. We have detected chromosomal abnormalities in 89/148 (60.1%) of specimens. Among them, aneuploidy was detected in 74 samples (83.1%). In the remaining samples, polyploidy was detected. The mosaic forms of chromosome abnormality, including autosomal and sex chromosomal aneuploidies and polyploidy (31 and 12 cases, respectively), were observed in 43/89 (48.3%) of specimens. The most frequent mosaic form of aneuploidy was related to chromosome X (19 cases). The frequency of mosaic forms of chromosomal abnormalities in samples with male chromosomal complement was 50% (16/32 chromosomally abnormal), and in samples with female chromosomal complement, it was 47.4% (27/57 chromosomally abnormal). The present study demonstrates that the postzygotic or mitotic errors leading to chromosomal mosaicism in spontaneous abortions are more frequent than previously suspected. Chromosomal mosaicism may contribute significantly to both pregnancy complications and spontaneous fetal loss.


Asunto(s)
Aborto Espontáneo/genética , Aberraciones Cromosómicas , Cromosomas Humanos , Mosaicismo , Adolescente , Adulto , Aneuploidia , Femenino , Humanos , Hibridación Fluorescente in Situ , Poliploidía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA