Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38931411

RESUMEN

Rarely has a chemical elicited as much controversy as dichloroacetate (DCA). DCA was initially considered a dangerous toxic industrial waste product, then a potential treatment for lactic acidosis. However, the main controversies started in 2008 when DCA was found to have anti-cancer effects on experimental animals. These publications showed contradictory results in vivo and in vitro such that a thorough consideration of this compound's in cancer is merited. Despite 50 years of experimentation, DCA's future in therapeutics is uncertain. Without adequate clinical trials and health authorities' approval, DCA has been introduced in off-label cancer treatments in alternative medicine clinics in Canada, Germany, and other European countries. The lack of well-planned clinical trials and its use by people without medical training has discouraged consideration by the scientific community. There are few thorough clinical studies of DCA, and many publications are individual case reports. Case reports of DCA's benefits against cancer have been increasing recently. Furthermore, it has been shown that DCA synergizes with conventional treatments and other repurposable drugs. Beyond the classic DCA target, pyruvate dehydrogenase kinase, new target molecules have also been recently discovered. These findings have renewed interest in DCA. This paper explores whether existing evidence justifies further research on DCA for cancer treatment and it explores the role DCA may play in it.

2.
Explor Target Antitumor Ther ; 5(1): 135-169, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464385

RESUMEN

Cells are separated from the environment by a lipid bilayer membrane that is relatively impermeable to solutes. The transport of ions and small molecules across this membrane is an essential process in cell biology and metabolism. Monocarboxylate transporters (MCTs) belong to a vast family of solute carriers (SLCs) that facilitate the transport of certain hydrophylic small compounds through the bilipid cell membrane. The existence of 446 genes that code for SLCs is the best evidence of their importance. In-depth research on MCTs is quite recent and probably promoted by their role in cancer development and progression. Importantly, it has recently been realized that these transporters represent an interesting target for cancer treatment. The search for clinically useful monocarboxylate inhibitors is an even more recent field. There is limited pre-clinical and clinical experience with new inhibitors and their precise mechanism of action is still under investigation. What is common to all of them is the inhibition of lactate transport. This review discusses the structure and function of MCTs, their participation in cancer, and old and newly developed inhibitors. Some suggestions on how to improve their anticancer effects are also discussed.

3.
Cancers (Basel) ; 15(18)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37760400

RESUMEN

Pancreatic ductal adenocarcinoma has a very high mortality rate which has been only minimally improved in the last 30 years. This high mortality is closely related to late diagnosis, which is usually made when the tumor is large and has extensively infiltrated neighboring tissues or distant metastases are already present. This is a paradoxical situation for a tumor that requires nearly 15 years to develop since the first founding mutation. Response to chemotherapy under such late circumstances is poor, resistance is frequent, and prolongation of survival is almost negligible. Early surgery has been, and still is, the only approach with a slightly better outcome. Unfortunately, the relapse percentage after surgery is still very high. In fact, early surgery clearly requires early diagnosis. Despite all the advances in diagnostic methods, the available tools for improving these results are scarce. Serum tumor markers permit a late diagnosis, but their contribution to an improved therapeutic result is very limited. On the other hand, effective screening methods for high-risk populations have not been fully developed as yet. This paper discusses the difficulties of early diagnosis, evaluates whether the available diagnostic tools are adequate, and proposes some simple and not-so-simple measures to improve it.

4.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38203255

RESUMEN

Trop-2 is a highly conserved one-pass transmembrane mammalian glycoprotein that is normally expressed in tissues such as the lung, intestines, and kidney during embryonic development. It is overexpressed in many epithelial cancers but is absent in non-epithelial tumors. Trop-2 is an intracellular calcium signal transducer that participates in the promotion of cell proliferation, migration, invasion, metastasis, and probably stemness. It also has some tumor suppressor effects. The pro-tumoral actions have been thoroughly investigated and reported. However, Trop-2's activity in chemoresistance is less well known. We review a possible relationship between Trop-2, chemotherapy, and chemoresistance. We conclude that there is a clear role for Trop-2 in some specific chemoresistance events. On the other hand, there is no clear evidence for its participation in multidrug resistance through direct drug transport. The development of antibody conjugate drugs (ACD) centered on anti-Trop-2 monoclonal antibodies opened the gates for the treatment of some tumors resistant to classic chemotherapies. Advanced urothelial tumors and breast cancer were among the first malignancies for which these ACDs have been employed. However, there is a wide group of other tumors that may benefit from anti-Trop-2 therapy as soon as clinical trials are completed.


Asunto(s)
Amiloidosis Familiar , Resistencia a Antineoplásicos , Femenino , Embarazo , Animales , Transporte Biológico , Calcio de la Dieta , Proliferación Celular , Mamíferos
5.
Cancer Drug Resist ; 5(2): 277-303, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35800371

RESUMEN

Multiple drug resistance (MDR) is the tumor's way of escaping the cytotoxic effects of various unrelated chemotherapeutic drugs. It can be either innate or acquired. MDR represents the end of the therapeutic pathway, and it practically leaves no treatment alternatives. Reversing MDR is an unfulfilled goal, despite the important recent advances in cancer research. MDR, the main cause of death in cancer patients, is a multi-factorial development, and most of its known causes have been thoroughly discussed in the literature. However, there is one aspect that has not received adequate consideration - intracellular alkalosis - which is part of wider pH deregulation where the pH gradient is inverted, meaning that extracellular pH is decreased and intracellular pH increased. This situation interacts with MDR and with the proteins involved, such as P-gp, breast cancer resistance protein, and multidrug associated resistance protein 1. However, there are also situations in which these proteins play no role at all, and where pH takes the lead. This is the case in ion trapping. Reversing the pH gradient to normal can be an important contribution to managing MDR. The drugs to manipulate pH exist, and most of them are FDA approved and in clinical use for other purposes. Furthermore, they have low or no toxicity and are inexpensive compared with any chemotherapeutic treatment. Repurposing these drugs and combining them in a reasonable fashion is one of the points proposed in this paper, which discusses the relationship between cancer's peculiar pH and MDR.

6.
J Evid Based Integr Med ; 27: 2515690X211068826, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35018864

RESUMEN

The flavonoid silymarin extracted from the seeds of Sylibum marianum is a mixture of 6 flavolignan isomers. The 3 more important isomers are silybin (or silibinin), silydianin, and silychristin. Silybin is functionally the most active of these compounds. This group of flavonoids has been extensively studied and they have been used as hepato-protective substances for the mushroom Amanita phalloides intoxication and mainly chronic liver diseases such as alcoholic cirrhosis and nonalcoholic fatty liver. Hepatitis C progression is not, or slightly, modified by silymarin. Recently, it has also been proposed for SARS COVID-19 infection therapy. The biochemical and molecular mechanisms of action of these substances in cancer are subjects of ongoing research. Paradoxically, many of its identified actions such as antioxidant, promoter of ribosomal synthesis, and mitochondrial membrane stabilization, may seem protumoral at first sight, however, silymarin compounds have clear anticancer effects. Some of them are: decreasing migration through multiple targeting, decreasing hypoxia inducible factor-1α expression, inducing apoptosis in some malignant cells, and inhibiting promitotic signaling among others. Interestingly, the antitumoral activity of silymarin compounds is limited to malignant cells while the nonmalignant cells seem not to be affected. Furthermore, there is a long history of silymarin use in human diseases without toxicity after prolonged administration. The ample distribution and easy accessibility to milk thistle-the source of silymarin compounds, its over the counter availability, the fact that it is a weed, some controversial issues regarding bioavailability, and being a nutraceutical rather than a drug, has somehow led medical professionals to view its anticancer effects with skepticism. This is a fundamental reason why it never achieved bedside status in cancer treatment. However, in spite of all the antitumoral effects, silymarin actually has dual effects and in some cases such as pancreatic cancer it can promote stemness. This review deals with recent investigations to elucidate the molecular actions of this flavonoid in cancer, and to consider the possibility of repurposing it. Particular attention is dedicated to silymarin's dual role in cancer and to some controversies of its real effectiveness.


Asunto(s)
COVID-19 , Neoplasias , Silimarina , Humanos , Silybum marianum , Neoplasias/tratamiento farmacológico , SARS-CoV-2 , Silibina
7.
Int J Mol Sci ; 21(23)2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33287221

RESUMEN

The inversion of the pH gradient in malignant tumors, known as the pH paradigm, is increasingly becoming accepted by the scientific community as a hallmark of cancer. Accumulated evidence shows that this is not simply a metabolic consequence of a dysregulated behavior, but rather an essential process in the physiopathology of accelerated proliferation and invasion. From the over-simplification of increased lactate production as the cause of the paradigm, as initially proposed, basic science researchers have arrived at highly complex and far-reaching knowledge, that substantially modified that initial belief. These new developments show that the paradigm entails a different regulation of membrane transporters, electrolyte exchangers, cellular and membrane enzymes, water trafficking, specialized membrane structures, transcription factors, and metabolic changes that go far beyond fermentative glycolysis. This complex world of dysregulations is still shuttered behind the walls of experimental laboratories and has not yet reached bedside medicine. However, there are many known pharmaceuticals and nutraceuticals that are capable of targeting the pH paradigm. Most of these products are well known, have low toxicity, and are also inexpensive. They need to be repurposed, and this would entail shorter clinical studies and enormous cost savings if we compare them with the time and expense required for the development of a new molecule. Will targeting the pH paradigm solve the "cancer problem"? Absolutely not. However, reversing the pH inversion would strongly enhance standard treatments, rendering them more efficient, and in some cases permitting lower doses of toxic drugs. This article's goal is to describe how to reverse the pH gradient inversion with existing drugs and nutraceuticals that can easily be used in bedside medicine, without adding toxicity to established treatments. It also aims at increasing awareness among practicing physicians that targeting the pH paradigm would be able to improve the results of standard therapies. Some clinical cases will be presented as well, showing how the pH gradient inversion can be treated at the bedside in a simple manner with repurposed drugs.


Asunto(s)
Concentración de Iones de Hidrógeno , Neoplasias/metabolismo , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores , Toma de Decisiones Clínicas , Manejo de la Enfermedad , Espacio Extracelular/metabolismo , Humanos , Espacio Intracelular/metabolismo , Terapia Molecular Dirigida , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Pronóstico , Intercambiador 1 de Sodio-Hidrógeno/antagonistas & inhibidores , Intercambiador 3 de Sodio-Hidrógeno/antagonistas & inhibidores , Bloqueadores del Canal de Sodio Activado por Voltaje , Canales de Sodio Activados por Voltaje/metabolismo
8.
Eur J Clin Nutr ; 74(Suppl 1): 14-19, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32873952

RESUMEN

Malignant tissues show a peculiar feature regarding pH: while normal tissues have a higher extracellular pH than intracellular pH, in cancer is exactly the opposite. This phenomenon is called the inversion of the pH gradient and is now considered a hallmark of malignancy. For some time, this inverted pH gradient was believed to be a secondary effect of cancer. Now, it is becoming clear that pH inversion is not an innocent consequence, but a key player in the etiopathogenesis of cancer. Therefore, addressing this issue as part of an integral treatment of neoplasia should be a necessary step for improving cancer patients' outcomes. However, the knowledge acquired in this regard through basic research has not reached bedside treatments. The most striking fact is that there are repurposed drugs and nutraceuticals with low or no toxicity that can modify the pH gradient inversion. However, these drugs have not even been tested in cancer treatment.


Asunto(s)
Neoplasias , Humanos , Concentración de Iones de Hidrógeno
9.
F1000Res ; 4: 9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26097685

RESUMEN

OBJECTIVE: To review the mechanisms of anti-cancer activity of nelfinavir and other protein inhibitors (PIs) based on evidences reported in the published literature. METHODS: We extensively reviewed the literature concerning nelfinavir (NFV) as an off target anti-cancer drug and other PIs. A classification of PIs based on anti-cancer mode of action was proposed. Controversies regarding nelfinavir mode of action were also addressed. CONCLUSIONS: The two main mechanisms involved in anti-cancer activity are endoplasmic reticulum stress-unfolded protein response pathway and Akt inhibition. However there are many other effects, partially dependent and independent of those mentioned, that may be useful in cancer treatment, including MMP-9 and MMP-2 inhibition, down-regulation of CDK-2, VEGF, bFGF, NF-kB, STAT-3, HIF-1 alfa, IGF, EGFR, survivin, BCRP, androgen receptor, proteasome, fatty acid synthase (FAS), decrease in cellular ATP concentration and upregulation of TRAIL receptor DR5, Bax, increased radiosensitivity, and autophagy. The end result of all these effects is slower growth, decreased angiogenesis, decreased invasion and increased apoptosis, which means reduced proliferation and increased cancer cells death. PIs may be classified according to their anticancer activity at clinically achievable doses, in AKT inhibitors, ER stressors and Akt inhibitors/ER stressors. Beyond the phase I trials that have been recently completed, adequately powered and well-designed clinical trials are needed in the various cancer type settings, and specific trials where NFV is tested in association with other known anti-cancer pharmaceuticals should be sought, in order to find an appropriate place for NFV in cancer treatment. The analysis of controversies on the molecular mechanisms of NFV hints to the possibility that NFV works in a different way in tumor cells and in hepatocytes and adipocytes.

10.
F1000Res ; 4: 297, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27408684

RESUMEN

OBJECTIVE: To determine the exact role of sodium channel proteins in migration, invasion and metastasis and understand the possible anti-invasion and anti-metastatic activity of repurposed drugs with voltage gated sodium channel blocking properties. MATERIAL AND METHODS: A review of the published medical literature was performed searching for pharmaceuticals used in daily practice, with inhibitory activity on voltage gated sodium channels. For every drug found, the literature was reviewed in order to define if it may act against cancer cells as an anti-invasion and anti-metastatic agent and if it was tested with this purpose in the experimental and clinical settings. RESULTS: The following pharmaceuticals that fulfill the above mentioned effects, were found: phenytoin, carbamazepine, valproate, lamotrigine, ranolazine, resveratrol, ropivacaine, lidocaine, mexiletine, flunarizine, and riluzole. Each of them are independently described and analyzed. CONCLUSIONS: The above mentioned pharmaceuticals have shown anti-metastatic and anti-invasion activity and many of them deserve to be tested in well-planned clinical trials as adjunct therapies for solid tumors and as anti-metastatic agents. Antiepileptic drugs like phenytoin, carbamazepine and valproate and the vasodilator flunarizine emerged as particularly useful for anti-metastatic purposes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA