Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Dairy Sci ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38876215

RESUMEN

Feed efficiency is important for economic profitability of dairy farms; however, recording daily dry matter intakes (DMI) is expensive. Our objective was to investigate the potential use of milk mid-infrared (MIR) spectral data to predict proxy phenotypes for DMI based on different cross-validation schemes. We were specifically interested in comparisons between a model that included only MIR data (Model M1), a model that incorporated different energy sink predictors, such as body weight, body weight change, and milk energy (Model M2), and an extended model that incorporated both energy sinks and MIR data (Model M3). Models M2 and M3 also included various cow level variables (stage of lactation, age at calving, parity) such that any improvement in model performance from M2 to M3, whether through a smaller root mean squared error (RMSE) or a greater squared predictive correlation (R2), could indicate a potential benefit of MIR to predict residual feed intake. The data used in our study originated from a multi-institutional project on the genetics of feed efficiency in US Holsteins. Analyses were conducted on 2 different trait definitions based on different period lengths: averaged across weeks vs. averaged across 28-d. Specifically, there were 19,942 weekly records on 1,812 cows across 46 experiments or cohorts and 3,724 28-d records on 1,700 cows across 43 different cohorts. The cross-validation analyses involved 3 different k-fold schemes. First, a 10-fold cow-independent cross-validation was conducted whereby all records from any one cow were kept together in either training or test sets. Similarly, a 10-fold experiment-independent cross-validation kept entire experiments together whereas a 4-fold herd-independent cross-validation kept entire herds together in either training or test sets. Based on cow-independent cross-validation for both weekly and 28-d DMI, adding MIR predictors to energy sinks (Models M3 vs M2) significantly (P < 10-10) reduced average RMSE to 1.59 kg and increased average R2 to 0.89. However, adding MIR to energy sinks (M3) to predict DMI either within an experiment-independent or herd-independent cross-validation scheme seemed to demonstrate no merit (P > 0.05) compared with an energy sink model (M2) for either R2 or RMSE (respectively, 0.68 and 2.55 kg for M2 in herd-independent scheme). We further noted that with broader cross-validation schemes, i.e., from cow-independent to experiment-independent to herd-independent schemes, the mean and slope bias increased. Given that proxy DMI phenotypes for cows would need to be almost entirely generated in herds having no DMI or training data of their own, herd-independent cross-validation assessments of predictive performance should be emphasized. Hence, more research on predictive algorithms suitable for broader cross-validation schemes and a more earnest effort on calibration of spectrophotometers against each other should be considered.

2.
J Dairy Sci ; 107(3): 1523-1534, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37690722

RESUMEN

Feed efficiency has become an increasingly important research topic in recent years. As feed costs rise and the environmental impacts of agriculture become more apparent, improving the efficiency with which dairy cows convert feed to milk is increasingly important. However, feed intake is expensive to measure accurately on large populations, making the inclusion of this trait in breeding programs difficult. Understanding how the genetic parameters of feed efficiency and traits related to feed efficiency vary throughout the lactation period is valuable to gain understanding into the genetic nature of feed efficiency. This study used 121,226 dry matter intake (DMI) records, 120,500 energy-corrected milk (ECM) records, and 98,975 metabolic body weight (MBW) records, collected on 7,440 first-lactation Holstein cows from 6 countries (Canada, Denmark, Germany, Spain, Switzerland, and the United States), from January 2003 to February 2022. Genetic parameters were estimated using a multiple-trait random regression model with a fourth-order Legendre polynomial for all traits. Weekly phenotypes for DMI were re-parameterized using linear regressions of DMI on ECM and MBW, creating a measure of feed efficiency that was genetically corrected for ECM and MBW, referred to as genomic residual feed intake (gRFI). Heritability (SE) estimates varied from 0.15 (0.03) to 0.29 (0.02) for DMI, 0.24 (0.01) to 0.29 (0.03) for ECM, 0.55 (0.03) to 0.83 (0.05) for MBW, and 0.12 (0.03) to 0.22 (0.06) for gRFI. In general, heritability estimates were lower in the first stage of lactation compared with the later stages of lactation. Additive genetic correlations between weeks of lactation varied, with stronger correlations between weeks of lactation that were close together. The results of this study contribute to a better understanding of the change in genetic parameters across the first lactation, providing insight into potential selection strategies to include feed efficiency in breeding programs.


Asunto(s)
Lactancia , Leche , Animales , Femenino , Bovinos/genética , Lactancia/genética , Ingestión de Alimentos/genética , Agricultura , Fenotipo
3.
J Dairy Sci ; 106(12): 9078-9094, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37678762

RESUMEN

Residual feed intake is viewed as an important trait in breeding programs that could be used to enhance genetic progress in feed efficiency. In particular, improving feed efficiency could improve both economic and environmental sustainability in the dairy cattle industry. However, data remain sparse, limiting the development of reliable genomic evaluations across lactation and parity for residual feed intake. Here, we estimated novel genetic parameters for genetic residual feed intake (gRFI) across the first, second, and third parity, using a random regression model. Research data on the measured feed intake, milk production, and body weight of 7,379 cows (271,080 records) from 6 countries in 2 continents were shared through the Horizon 2020 project Genomic Management Tools to Optimise Resilience and Efficiency, and the Resilient Dairy Genome Project. The countries included Canada (1,053 cows with 47,130 weekly records), Denmark (1,045 cows with 72,760 weekly records), France (329 cows with 16,888 weekly records), Germany (938 cows with 32,614 weekly records), the Netherlands (2,051 cows with 57,830 weekly records), and United States (1,963 cows with 43,858 weekly records). Each trait had variance components estimated from first to third parity, using a random regression model across countries. Genetic residual feed intake was found to be heritable in all 3 parities, with first parity being predominant (range: 22-34%). Genetic residual feed intake was highly correlated across parities for mid- to late lactation; however, genetic correlation across parities was lower during early lactation, especially when comparing first and third parity. We estimated a genetic correlation of 0.77 ± 0.37 between North America and Europe for dry matter intake at first parity. Published literature on genetic correlations between high input countries/continents for dry matter intake support a high genetic correlation for dry matter intake. In conclusion, our results demonstrate the feasibility of estimating variance components for gRFI across parities, and the value of sharing data on scarce phenotypes across countries. These results can potentially be implemented in genetic evaluations for gRFI in dairy cattle.


Asunto(s)
Lactancia , Leche , Embarazo , Femenino , Bovinos/genética , Animales , Paridad , Factores de Tiempo , Lactancia/genética , Ingestión de Alimentos/genética , Europa (Continente) , América del Norte , Alimentación Animal/análisis
4.
J Dairy Sci ; 105(12): 9666-9681, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36241434

RESUMEN

Quantifying dry matter intake (DMI) in lactating dairy cows is important for determining feed efficiency; however, there are no methods for economically quantifying individual cow DMI on dairy farms where cows are group-fed. Attempts have been made to model DMI using cow factors, milk production, milk infrared spectra, and behavioral sensors with reasonable success. Other data streams are available on the farm that may contribute to DMI predictions. In this study, our objective was to model DMI with multiple linear regression using data from a single point-in-time that can easily be accessed on-farm. Candidate predictor variables included cow descriptors, milk yield and composition, milk fatty acid profile, and production and efficiency predicting transmitting abilities (PTA). Observations of DMI were obtained from 350 cows across 6 cohorts using individual feed bunks. The cow to bunk ratio was 2:1, with an overall bunk occupation rate of 32% throughout the day. The following models were developed sequentially with milk data obtained from a single morning milking and other data from the same day: model B (production, metabolic body weight, body condition score, lactation category, and week of lactation), model BC [model B + fatty acid (FA) content], model BY (model B + FA yield), model BPE (model B + production and efficiency PTA), model BYP (model BY + production PTA), model BYE (model BY + efficiency PTA), and model BYPE (model BY + production and efficiency PTA). Outcome variables predicted in these models were the DMI on the previous day or current day relative to the morning milk sample. The predictions for DMI on the previous day outperformed current day DMI in every model for which they were both determined. Addition of milk FA and PTA as candidate predictor variable types to the models resulted in enhanced predictive ability, with incremental enhancements when combined. The most robust model (BYPE) included cow descriptors, protein and FA yields, and PTA for milk and residual feed intake. Model BYPE described 21 to 32% more of the variation in DMI (based on concordance correlation coefficient) than when other common DMI models were applied to the same data set. Overall, reasonable performance of models including single point-in-time cow descriptors, milk and FA production, and production and efficiency PTA commonly available to dairy farmers through dairy herd improvement programs offer an opportunity for on-farm prediction of DMI, yet further improvement may be possible.


Asunto(s)
Alimentación Animal , Lactancia , Femenino , Bovinos , Animales , Granjas , Alimentación Animal/análisis , Leche/metabolismo , Ácidos Grasos/metabolismo , Dieta/veterinaria
5.
Front Genet ; 13: 886875, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36081988

RESUMEN

Exposure to less-hygienic conditions during early childhood has been associated with stimulation and development of the immune system. A recent study indicated that exposure of piglets to soil-borne microbes during lactation was related with modulation of gut microbiota and immune function. To identify the potential molecular mechanisms and pathways impacted by early-life topsoil exposure, we analyzed the messenger RNA (mRNA) and micro-RNA (miRNA) expression in peripheral blood mononuclear cells (PBMCs) from these piglets. Total RNA was extracted from the PBMCs of piglets exposed to topsoil only from d 4-d 21 of life (mRNA n = 6; miRNA n = 5) or unexposed control pigs (mRNA n = 6; miRNA n = 8) at 11, 20, and 56 days of age. Small RNA and mRNA were sequenced with 50-bp single-end reads using Illumina chemistry. Sequence data were quality checked with FASTQC software and aligned to the Sscrofa 11.1 genome with the STAR aligner for mRNA and mirDeep2 for miRNA. Differential expression (DE) analysis was performed using PROC Glimmix of SAS to evaluate changes in expression due to topsoil exposure over time with genes declared DE at a false discovery rate (FDR) of q < 0.10. A total of 138 mRNA and 21 miRNAs were identified as DE for the treatment by age interaction. Ontology enrichment analysis of DE mRNA revealed Gene ontology (GO) terms directly involved in the connection between T-cell and antigen-presenting cells that are associated with T-cell activation. Key regulatory genes identified include PTPRJ, ITGB3, TRBV30, CD3D, mir-143, mir-29, and mir-148a. While these results require validation, this study provides data supporting the hypothesis that less-hygienic environments during early life may contribute to the development of the immune system.

6.
J Dairy Sci ; 105(7): 5954-5971, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35636997

RESUMEN

Residual feed intake (RFI) and feed saved (FS) are important feed efficiency traits that have been increasingly considered in genetic improvement programs. Future sustainability of these genetic evaluations will depend upon greater flexibility to accommodate sparsely recorded dry matter intake (DMI) records on many more cows, especially from commercial environments. Recent multiple-trait random regression (MTRR) modeling developments have facilitated days in milk (DIM)-specific inferences on RFI and FS, particularly in modeling the effect of change in metabolic body weight (MBW). The MTRR analyses, using daily data on the core traits of DMI, MBW, and milk energy (MilkE), were conducted separately for 2,532 primiparous and 2,379 multiparous US Holstein cows from 50 to 200 DIM. Estimated MTRR variance components were used to derive genetic RFI and FS and DIM-specific genetic partial regressions of DMI on MBW, MilkE, and change in MBW. Estimated daily heritabilities of RFI and FS varied across lactation for both primiparous (0.05-0.07 and 0.11-0.17, respectively) and multiparous (0.03-0.13 and 0.10-0.17, respectively) cows. Genetic correlations of RFI across DIM varied (>0.05) widely compared with FS (>0.54) within either parity class. Heritability estimates based on average lactation-wise measures were substantially larger than daily heritabilities, ranging from 0.17 to 0.25 for RFI and from 0.35 to 0.41 for FS. The partial genetic regression coefficients of DMI on MBW (0.11 to 0.16 kg/kg0.75 for primiparous and 0.12 to 0.14 kg/kg0.75 for multiparous cows) and of DMI on MilkE (0.45 to 0.68 kg/Mcal for primiparous and 0.36 to 0.61 kg/Mcal for multiparous cows) also varied across lactation. In spite of the computational challenges encountered with MTRR, the model potentially facilitates an efficient strategy for harnessing more data involving a wide variety of data recording scenarios for genetic evaluations on feed efficiency.


Asunto(s)
Lactancia , Leche , Alimentación Animal/análisis , Animales , Peso Corporal/genética , Bovinos/genética , Ingestión de Alimentos/genética , Femenino , Lactancia/genética , Leche/metabolismo , Fenotipo , Embarazo
8.
BMC Genomics ; 17(1): 891, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27821053

RESUMEN

BACKGROUND: Consumers are becoming increasingly conscientious about the nutritional value of their food. Consumption of some fatty acids has been associated with human health traits such as blood pressure and cardiovascular disease. Therefore, it is important to investigate genetic variation in content of fatty acids present in meat. Previously publications reported regions of the cattle genome that are additively associated with variation in fatty acid content. This study evaluated epistatic interactions, which could account for additional genetic variation in fatty acid content. RESULTS: Epistatic interactions for 44 fatty acid traits in a population of Angus beef cattle were evaluated with EpiSNPmpi. False discovery rate (FDR) was controlled at 5 % and was limited to well-represented genotypic combinations. Epistatic interactions were detected for 37 triacylglyceride (TAG), 36 phospholipid (PL) fatty acid traits, and three weight traits. A total of 6,181, 7,168, and 0 significant epistatic interactions (FDR < 0.05, 50-animals per genotype combination) were associated with Triacylglyceride fatty acids, Phospholipid fatty acids, and weight traits respectively and most were additive-by-additive interactions. A large number of interactions occurred in potential regions of regulatory control along the chromosomes where genes related to fatty acid metabolism reside. CONCLUSIONS: Many fatty acids were associated with epistatic interactions. Despite a large number of significant interactions, there are a limited number of genomic locations that harbored these interactions. While larger population sizes are needed to accurately validate and quantify these epistatic interactions, the current findings point towards additional genetic variance that can be accounted for within these fatty acid traits.


Asunto(s)
Epistasis Genética , Ácidos Grasos/análisis , Análisis de los Alimentos , Calidad de los Alimentos , Carne Roja/análisis , Animales , Bovinos , Estudios de Asociación Genética , Genotipo , Fenotipo , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable
9.
BMC Genomics ; 17(1): 812, 2016 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-27760519

RESUMEN

BACKGROUND: Analyses of sequence variants of two distinct and highly inbred chicken lines allowed characterization of genomic variation that may be associated with phenotypic differences between breeds. These lines were the Leghorn, the major contributing breed to commercial white-egg production lines, and the Fayoumi, representative of an outbred indigenous and robust breed. Unique within- and between-line genetic diversity was used to define the genetic differences of the two breeds through the use of variant discovery and functional annotation. RESULTS: Downstream fixation test (F ST ) analysis and subsequent gene ontology (GO) enrichment analysis elucidated major differences between the two lines. The genes with high F ST values for both breeds were used to identify enriched gene ontology terms. Over-enriched GO annotations were uncovered for functions indicative of breed-related traits of pathogen resistance and reproductive ability for Fayoumi and Leghorn, respectively. CONCLUSIONS: Variant analysis elucidated GO functions indicative of breed-predominant phenotypes related to genomic variation in the lines, showing a possible link between the genetic variants and breed traits.


Asunto(s)
Cruzamiento , Pollos/genética , Genómica , Fenotipo , Polimorfismo de Nucleótido Simple , Animales , Cromosomas , Biología Computacional/métodos , Variación Genética , Genómica/métodos , Mutación , Reproducibilidad de los Resultados
10.
Anim Genet ; 47(6): 658-671, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27558209

RESUMEN

The objective of this study was to determine how prenatal and postnatal dietary omega-3 fatty acids alter white blood cell (leukocyte) DNA methylation of offspring. Fifteen gilts (n = 5 per treatment) were selected from one of three treatments: (i) control diet throughout gestation, lactation and nursery phase (CON); (ii) algal omega-3 fatty acid supplementation enriched in EPA and DHA (Gromega™ ) fed throughout gestation, lactation and nursery phase (Cn3); or (iii) Gromega™ supplementation maternally, during gestation and lactation only, and control diet during the nursery phase (Mn3). At 11 weeks of age and after 8 weeks of post-weaning nursery feeding, buffy coat genomic DNA was subjected to methyl CpG binding protein sequencing. The methylation enriched profile mapped to 26% of the porcine genome. On chromosome 4, a 27.7-kb differentially methylated region downstream of RUNX1T1 was hypomethylated in the Mn3 and Cn3 groups by 91.6% and 85.0% respectively compared to CON pigs. Conversely, hypermethylation was detected in intergenic regions of chromosomes 4 and 12. Regulatory impact factor and differential hubbing methods were used to identify pathways that were coordinately regulated by methylation due to feeding EPA and DHA during pregnancy. Despite limited ability to detect differential methylation, we describe methods that allow the identification of coordinated epigenetic regulation that could not otherwise be detected from subtle single locus changes in methylation. These data provide evidence of novel epigenetic regulation by maternal and early life supplementation of omega-3 fatty acids that may have implications to growth and inflammatory processes.


Asunto(s)
Metilación de ADN , Suplementos Dietéticos , Ácidos Grasos Omega-3/administración & dosificación , Fenómenos Fisiologicos de la Nutrición Prenatal , Sus scrofa/genética , Alimentación Animal , Animales , ADN Intergénico/genética , Epigénesis Genética , Femenino , Lactancia , Embarazo , Destete
11.
BMC Genomics ; 17: 407, 2016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27230772

RESUMEN

BACKGROUND: Indigenous populations of animals have developed unique adaptations to their local environments, which may include factors such as response to thermal stress, drought, pathogens and suboptimal nutrition. The survival and subsequent evolution within these local environments can be the result of both natural and artificial selection driving the acquisition of favorable traits, which over time leave genomic signatures in a population. This study's goals are to characterize genomic diversity and identify selection signatures in chickens from equatorial Africa to identify genomic regions that may confer adaptive advantages of these ecotypes to their environments. RESULTS: Indigenous chickens from Uganda (n = 72) and Rwanda (n = 100), plus Kuroilers (n = 24, an Indian breed imported to Africa), were genotyped using the Axiom® 600 k Chicken Genotyping Array. Indigenous ecotypes were defined based upon location of sampling within Africa. The results revealed the presence of admixture among the Ugandan, Rwandan, and Kuroiler populations. Genes within runs of homozygosity consensus regions are linked to gene ontology (GO) terms related to lipid metabolism, immune functions and stress-mediated responses (FDR < 0.15). The genes within regions of signatures of selection are enriched for GO terms related to health and oxidative stress processes. Key genes in these regions had anti-oxidant, apoptosis, and inflammation functions. CONCLUSIONS: The study suggests that these populations have alleles under selective pressure from their environment, which may aid in adaptation to harsh environments. The correspondence in gene ontology terms connected to stress-mediated processes across the populations could be related to the similarity of environments or an artifact of the detected admixture.


Asunto(s)
Ecotipo , Genoma , Genómica , Genotipo , Animales , Pollos/genética , Biología Computacional/métodos , Ontología de Genes , Genética de Población , Genómica/métodos , Técnicas de Genotipaje , Homocigoto , Selección Genética
12.
J Anim Sci ; 93(5): 2134-43, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26020309

RESUMEN

Although most pigs recover rapidly from stresses associated with the transition of weaning, a portion of the population lags behind their contemporaries in growth performance. The underlying biological and molecular mechanisms involved in postweaning differences in growth performance are poorly understood. The objective of this experiment was to use transcriptional profiling of skeletal muscle and adipose tissue to develop a better understanding of the metabolic basis for poor weaned-pig transition. A total of 1,054 pigs was reared in commercial conditions and weighed at birth, weaning, and 3 wk postweaning. Transition ADG (tADG) was calculated as the ADG for the 3-wk period postweaning. Nine pigs from both the lowest 10th percentile (low tADG) and the 60th to 70th percentile (high tADG) were harvested at 3 wk postweaning. Differential expression analysis was conducted in longissimus dorsi muscle (LM) and subcutaneous adipose tissue using RNA-Seq methodology. In LM, 768 transcripts were differentially expressed (DE), 327 with higher expression in low tADG and 441 with higher expression in high tADG pigs (q < 0.10). Expression patterns measured in LM by RNA-Seq were verified in 30 of 32 transcripts using quantitative PCR. No DE transcripts were identified in adipose tissue. To identify biological functions potentially underlying the effects of tADG on skeletal muscle metabolism and physiology, functional annotation analysis of the DE transcripts was conducted using DAVID and Pathway Studio analytic tools. The group of DE genes with lower expression in LM of low tADG pigs was enriched in genes with functions related to muscle contraction, glucose metabolism, cytoskeleton organization, muscle development, and response to hormone stimulus (enrichment score > 1.3). The list of DE genes with higher expression in low tADG LM was enriched in genes with functions related to protein catabolism (enrichment score > 1.3). Analysis of known gene-gene interactions identified possible regulators of these differences in gene expression in LM of high and low tADG pigs; these include forkhead box O1 (FOXO1), growth hormone (GH1), and the glucocorticoid receptor (NR3C1). Differences in gene expression between poor transitioning pigs and their contemporaries indicate a shift to decreased protein synthesis, increased protein degradation, and reduced glucose metabolism in the LM of low tADG pigs.


Asunto(s)
Perfilación de la Expresión Génica/veterinaria , Regulación del Desarrollo de la Expresión Génica/fisiología , Grasa Subcutánea/metabolismo , Músculos Superficiales de la Espalda/metabolismo , Sus scrofa/crecimiento & desarrollo , Animales , Secuencia de Bases , Hormona del Crecimiento/metabolismo , Datos de Secuencia Molecular , Análisis de Secuencia de ARN/veterinaria , Porcinos , Destete , Aumento de Peso/fisiología
13.
J Anim Sci ; 87(5): 1576-81, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19213716

RESUMEN

A microsatellite-based genome scan of a Wagyu x Limousin F(2) cross population previously demonstrated QTL affecting LM area and fatty acid composition were present in regions near the centromere of BTA2. In this study, we used 70 SNP markers to examine the centromeric 24 megabases (Mb) of BTA2, including the Limousin-specific F94L myostatin allele (AB076403.1; 415C > A) located at approximately 6 Mb on the draft genome sequence of BTA2. A significant effect of the F94L marker was observed (F = 60.17) for LM area, which indicated that myostatin is most likely responsible for the effect. This is consistent with previous reports that the substitution of Leu for Phe at AA 94 of myostatin (caused by the 415C > A transversion) is associated with increased muscle growth. Surprisingly, several fatty acid trait QTL, which affected the amount of unsaturated fats, also mapped to or very near the myostatin marker, including the ratio of C16:1 MUFA to C16:0 saturated fat (F = 16.72), C18:1 to C18:0 (F = 18.88), and total content of MUFA (F = 17.12). In addition, QTL for extent of marbling (F = 14.73) approached significance (P = 0.05), and CLA concentration (F = 9.22) was marginally significant (P = 0.18). We also observed associations of SNP located at 16.3 Mb with KPH (F = 15.00) and for the amount of SFA (F = 12.01). These results provide insight into genetic differences between the Wagyu and Limousin breeds and may lead to a better tasting and healthier product for consumers through improved selection for lipid content of beef.


Asunto(s)
Alelos , Bovinos/genética , Ácidos Grasos/química , Carne/normas , Músculo Esquelético/química , Miostatina/genética , Animales , Femenino , Masculino , Polimorfismo de Nucleótido Simple/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...