Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
AAPS PharmSciTech ; 25(7): 190, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164432

RESUMEN

In this research, 3D-printed antifungal buccal films (BFs) were manufactured as a potential alternative to commercially available antifungal oral gels addressing key considerations such as ease of manufacturing, convenience of administration, enhanced drug efficacy and suitability of paediatric patients. The fabrication process involved the use of a semi-solid extrusion method to create BFs from zein-Poly-Vinyl-Pyrrolidone (zein-PVP) polymer blend, which served as a carrier for drug (miconazole) and taste enhancers. After manufacturing, it was determined that the disintegration time for all films was less than 10 min. However, these films are designed to adhere to buccal tissue, ensuring sustained drug release. Approximately 80% of the miconazole was released gradually over 2 h from the zein/PVP matrix of the 3D printed films. Moreover, a detailed physicochemical characterization including spectroscopic and thermal methods was conducted to assess solid state and thermal stability of film constituents. Mucoadhesive properties and mechanical evaluation were also studied, while permeability studies revealed the extent to which film-loaded miconazole permeates through buccal tissue compared to commercially available oral gel formulation. Histological evaluation of the treated tissues was followed. Furthermore, in vitro antifungal activity was assessed for the developed films and the commercial oral gel. Finally, films underwent a two-month drug stability test to ascertain the suitability of the BFs for clinical application. The results demonstrate that 3D-printed films are a promising alternative for local administration of miconazole in the oral cavity.


Asunto(s)
Antifúngicos , Candidiasis Bucal , Liberación de Fármacos , Miconazol , Impresión Tridimensional , Miconazol/administración & dosificación , Miconazol/química , Miconazol/farmacocinética , Antifúngicos/administración & dosificación , Antifúngicos/química , Antifúngicos/farmacocinética , Administración Bucal , Candidiasis Bucal/tratamiento farmacológico , Humanos , Zeína/química , Mucosa Bucal/metabolismo , Mucosa Bucal/microbiología , Povidona/química , Permeabilidad , Sistemas de Liberación de Medicamentos/métodos , Animales , Química Farmacéutica/métodos , Niño
2.
Nanomaterials (Basel) ; 14(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38998708

RESUMEN

In the current study, the synthesis of hydroxyapatite-ceria (HAP-CeO2) scaffolds is attempted through a bioinspired chemical approach. The utilized colloidal CeO2 suspension presents antifungal activity against the Aspergillus flavus and Aspergillus fumigatus species at concentrations higher than 86.1 ppm. Three different series of the composite HAP-CeO2 suspensions are produced, which are differentiated based on the precursor suspension to which the CeO2 suspension is added and by whether this addition takes place before or after the formation of the hydroxyapatite phase. Each of the series consists of three suspensions, in which the pure ceria weight reaches 4, 5, and 10% (by mass) of the produced hydroxyapatite, respectively. The characterization showed that the 2S series's specimens present the greater alteration towards their viscoelastic properties. Furthermore, the 2S series's sample with 4% CeO2 presents the best mechanical response. This is due to the growth of needle-like HAP crystals during lyophilization, which-when oriented perpendicular to the direction of stress application-enhance the resistance of the sample to deformation. The 2S series's scaffolds had an average pore size equal to 100 µm and minimum open porosity 89.5% while simultaneously presented the lowest dissolution rate in phosphate buffered saline.

3.
Biomimetics (Basel) ; 9(6)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38921239

RESUMEN

Esophageal cancer is a complex and challenging tumor to treat, with esophageal stenting being used as a palliative measure to improve the quality of life of patients. Self-expandable metal stents (SEMS), self-expandable plastic stents (SEPS), and biodegradable stents are the most commonly used types of stents. However, complications can arise, such as migration, bleeding, and perforation. To address issues of migration, this study developed a novel 3D printed bioinspired esophageal stent utilizing a highly flexible and ductile TPU material. The stent was designed to be self-expanding and tubular with flared ends to provide secure anchorage at both the proximal and distal ends of the structure. Suction cups were strategically placed around the shaft of the stent to prevent migration. The stent was evaluated through compression-recovery, self-expansion, and anti-migration tests to evaluate its recovery properties, self-expansion ability, and anchoring ability, respectively. The results indicated that the novel stent was able to recover its shape, expand, keep the esophagus open, and resist migration, demonstrating its potential for further research and clinical applications. Finite element analysis (FEA) was leveraged to analyze the stent's mechanical behavior, providing insights into its structural integrity, self-expansion capability, and resistance against migration. These results, supported by FEA, highlight the potential of this innovative stent for further research and its eventual application in preclinical settings.

4.
Materials (Basel) ; 16(13)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37445140

RESUMEN

The addition of biocarriers can improve biological processes in bioreactors, since their surface allows for the immobilization, attachment, protection, and growth of microorganisms. In addition, the development of a biofilm layer allows for the colonization of microorganisms in the biocarriers. The structure, composition, and roughness of the biocarriers' surface are crucial factors that affect the development of the biofilm. In the current work, the aluminosilicate zeolites 13X and ZSM-5 were examined as the main building components of the biocarrier scaffolds, using bentonite, montmorillonite, and halloysite nanotubes as inorganic binders in various combinations. We utilized 3D printing to form pastes into monoliths that underwent heat treatment. The 3D-printed biocarriers were subjected to a mechanical analysis, including density, compression, and nanoindentation tests. Furthermore, the 3D-printed biocarriers were morphologically and structurally characterized using nitrogen adsorption at 77 K (LN2), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The stress-strain response of the materials was obtained through nanoindentation tests combined with the finite element analysis (FEA). These tests were also utilized to simulate the lattice geometries under compression loading conditions to investigate their deformation and stress distribution in relation to experimental compression testing. The results indicated that the 3D-printed biocarrier of 13X/halloysite nanotubes was endowed with a high specific surface area of 711 m2/g and extended mesoporous structure. Due to these assets, its bulk density of 1.67 g/cm3 was one of the lowest observed amongst the biocarriers derived from the various combinations of materials. The biocarriers based on the 13X zeolite exhibited the highest mechanical stability and appropriate morphological features. The 13X/halloysite nanotubes scaffold exhibited a hardness value of 45.64 MPa, which is moderate compared to the rest, while it presented the highest value of modulus of elasticity. In conclusion, aluminosilicate zeolites and their combinations with clays and inorganic nanotubes provide 3D-printed biocarriers with various textural and structural properties, which can be utilized to improve biological processes, while the most favorable characteristics are observed when utilizing the combination of 13X/halloysite nanotubes.

5.
Polymers (Basel) ; 15(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37376353

RESUMEN

This work aimed to produce bio-based poly(ethylene furanoate) (PEF) with a high molecular weight using 2,5-furan dicarboxylic acid (FDCA) or its derivative dimethyl 2,5-furan dicarboxylate (DMFD), targeting food packaging applications. The effect of monomer type, molar ratios, catalyst, polycondensation time, and temperature on synthesized samples' intrinsic viscosities and color intensity was evaluated. It was found that FDCA is more effective than DMFD in producing PEF with higher molecular weight. A sum of complementary techniques was employed to study the structure-properties relationships of the prepared PEF samples, both in amorphous and semicrystalline states. The amorphous samples exhibited an increase in glass transition temperature of 82-87 °C, and annealed samples displayed a decrease in crystallinity with increasing intrinsic viscosity, as analyzed by differential scanning calorimetry and X-ray diffraction. Dielectric spectroscopy showed moderate local and segmental dynamics and high ionic conductivity for the 2,5-FDCA-based samples. The spherulite size and nuclei density of samples improved with increased melt crystallization and viscosity, respectively. The hydrophilicity and oxygen permeability of the samples were reduced with increased rigidity and molecular weight. The nanoindentation test showed that the hardness and elastic modulus of amorphous and annealed samples is higher at low viscosities due to high intermolecular interactions and degree of crystallinity.

6.
Polymers (Basel) ; 15(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37242959

RESUMEN

Poly(lactic acid) (PLA) composites with 0.5 wt% lignin or nanolignin were prepared with two different techniques: (a) conventional melt-mixing and (b) in situ Ring Opening Polymerization (ROP) by reactive processing. The ROP process was monitored by measuring the torque. The composites were synthesized rapidly using reactive processing that took under 20 min. When the catalyst amount was doubled, the reaction time was reduced to under 15 min. The dispersion, thermal transitions, mechanical properties, antioxidant activity, and optical properties of the resulting PLA-based composites were evaluated with SEM, DSC, nanoindentation, DPPH assay, and DRS spectroscopy. All reactive processing-prepared composites were characterized by means of SEM, GPC, and NMR to assess their morphology, molecular weight, and free lactide content. The benefits of the size reduction of lignin and the use of in situ ROP by reactive processing were demonstrated, as the reactive processing-produced nanolignin-containing composites had superior crystallization, mechanical, and antioxidant properties. These improvements were attributed to the participation of nanolignin in the ROP of lactide as a macroinitiator, resulting in PLA-grafted nanolignin particles that improved its dispersion.

7.
Polymers (Basel) ; 15(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38231946

RESUMEN

Poly(ethylene 2,5-furandicarboxylate) (PEF)-based nanocomposites containing Ce-bioglass, ZnO, and ZrO2 nanoparticles were synthesized via in situ polymerization, targeting food packaging applications. The nanocomposites were thoroughly characterized, combining a range of techniques. The successful polymerization was confirmed using attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy, and the molecular weight values were determined indirectly by applying intrinsic viscosity measurements. The nanocomposites' structure was investigated by depth profiling using time-of-flight secondary ion mass spectrometry (ToF-SIMS), while color measurements showed a low-to-moderate increase in the color concentration of all the nanocomposites compared to neat PEF. The thermal properties and crystallinity behavior of the synthesized materials were also examined. The neat PEF and PEF-based nanocomposites show a crystalline fraction of 0-5%, and annealed samples of both PEF and PEF-based nanocomposites exhibit a crystallinity above 20%. Furthermore, scanning electron microscopy (SEM) micrographs revealed that active agent nanoparticles are well dispersed in the PEF matrix. Contact angle measurements showed that incorporating nanoparticles into the PEF matrix significantly reduces the wetting angle due to increased roughness and introduction of the polar -OH groups. Antimicrobial studies indicated a significant increase in inhibition of bacterial strains of about 9-22% for Gram-positive bacterial strains and 5-16% for Gram-negative bacterial strains in PEF nanocomposite films, respectively. Finally, nanoindentation tests showed that the ZnO-based nanocomposite exhibits improved hardness and elastic modulus values compared to neat PEF.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA