Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Mater ; 22(12): 1453-1462, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37620646

RESUMEN

Robots have components that work together to accomplish a task. Colloids are particles, usually less than 100 µm, that are small enough that they do not settle out of solution. Colloidal robots are particles capable of functions such as sensing, computation, communication, locomotion and energy management that are all controlled by the particle itself. Their design and synthesis is an emerging area of interdisciplinary research drawing from materials science, colloid science, self-assembly, robophysics and control theory. Many colloidal robot systems approach synthetic versions of biological cells in autonomy and may find ultimate utility in bringing these specialized functions to previously inaccessible locations. This Perspective examines the emerging literature and highlights certain design principles and strategies towards the realization of colloidal robots.

2.
Chem Rev ; 123(6): 2737-2831, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36898130

RESUMEN

Confined fluids and electrolyte solutions in nanopores exhibit rich and surprising physics and chemistry that impact the mass transport and energy efficiency in many important natural systems and industrial applications. Existing theories often fail to predict the exotic effects observed in the narrowest of such pores, called single-digit nanopores (SDNs), which have diameters or conduit widths of less than 10 nm, and have only recently become accessible for experimental measurements. What SDNs reveal has been surprising, including a rapidly increasing number of examples such as extraordinarily fast water transport, distorted fluid-phase boundaries, strong ion-correlation and quantum effects, and dielectric anomalies that are not observed in larger pores. Exploiting these effects presents myriad opportunities in both basic and applied research that stand to impact a host of new technologies at the water-energy nexus, from new membranes for precise separations and water purification to new gas permeable materials for water electrolyzers and energy-storage devices. SDNs also present unique opportunities to achieve ultrasensitive and selective chemical sensing at the single-ion and single-molecule limit. In this review article, we summarize the progress on nanofluidics of SDNs, with a focus on the confinement effects that arise in these extremely narrow nanopores. The recent development of precision model systems, transformative experimental tools, and multiscale theories that have played enabling roles in advancing this frontier are reviewed. We also identify new knowledge gaps in our understanding of nanofluidic transport and provide an outlook for the future challenges and opportunities at this rapidly advancing frontier.

3.
Nano Lett ; 23(3): 916-924, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36651830

RESUMEN

Gibberellins (GAs) are a class of phytohormones, important for plant growth, and very difficult to distinguish because of their similarity in chemical structures. Herein, we develop the first nanosensors for GAs by designing and engineering polymer-wrapped single-walled carbon nanotubes (SWNTs) with unique corona phases that selectively bind to bioactive GAs, GA3 and GA4, triggering near-infrared (NIR) fluorescence intensity changes. Using a new coupled Raman/NIR fluorimeter that enables self-referencing of nanosensor NIR fluorescence with its Raman G-band, we demonstrated detection of cellular GA in Arabidopsis, lettuce, and basil roots. The nanosensors reported increased endogenous GA levels in transgenic Arabidopsis mutants that overexpress GA and in emerging lateral roots. Our approach allows rapid spatiotemporal detection of GA across species. The reversible sensor captured the decreasing GA levels in salt-treated lettuce roots, which correlated remarkably with fresh weight changes. This work demonstrates the potential for nanosensors to solve longstanding problems in plant biotechnology.


Asunto(s)
Arabidopsis , Nanotubos de Carbono , Giberelinas/química , Giberelinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/metabolismo , Nanotubos de Carbono/química , Fluorescencia , Colorantes
4.
Nanotechnology ; 34(11)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36595236

RESUMEN

Quantum emitters in two-dimensional hexagonal boron nitride (hBN) are of significant interest because of their unique photophysical properties, such as single-photon emission at room temperature, and promising applications in quantum computing and communications. The photoemission from hBN defects covers a wide range of emission energies but identifying and modulating the properties of specific emitters remain challenging due to uncontrolled formation of hBN defects. In this study, more than 2000 spectra are collected consisting of single, isolated zero-phonon lines (ZPLs) between 1.59 and 2.25 eV from diverse sample types. Most of ZPLs are organized into seven discretized emission energies. All emitters exhibit a range of lifetimes from 1 to 6 ns, and phonon sidebands offset by the dominant lattice phonon in hBN near 1370 cm-1. Two chemical processing schemes are developed based on water and boric acid etching that generate or preferentially interconvert specific emitters, respectively. The identification and chemical interconversion of these discretized emitters should significantly advance the understanding of solid-state chemistry and photophysics of hBN quantum emission.

5.
ACS Nano ; 17(1): 240-250, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36524700

RESUMEN

There is a pressing need for sensors and assays to monitor chemotherapeutic activity within the human body in real time to optimize drug dosimetry parameters such as timing, quantity, and frequency in an effort to maximize efficacy while minimizing deleterious cytotoxicity. Herein, we develop near-infrared fluorescent nanosensors based on single walled carbon nanotubes for the chemotherapeutic Temozolomide (TMZ) and its metabolite 5-aminoimidazole-4-carboxamide using Corona Phase Molecular Recognition as a synthetic molecular recognition technique. The resulting nanoparticle sensors are able to monitor drug activity in real-time even under in vivo conditions. Sensors can be engineered to be biocompatible by encapsulation in poly(ethylene glycol) diacrylate hydrogels. Selective detection of TMZ was demonstrated using U-87 MG human glioblastoma cells and SKH-1E mice with detection limits below 30 µM. As sensor implants, we show that such systems can provide spatiotemporal therapeutic information in vivo, as a valuable tool for pharmacokinetic evaluation. Sensor implants are also evaluated using intact porcine brain tissue implanted 2.1 cm below the cranium and monitored using a recently developed Wavelength-Induced Frequency Filtering technique. Additionally, we show that by taking the measurement of spatial and temporal analyte concentrations within each hydrogel implant, the direction of therapeutic flux can be resolved. In all, these types of sensors enable the real time detection of chemotherapeutic concentration, flux, directional transport, and metabolic activity, providing crucial information regarding therapeutic effectiveness.


Asunto(s)
Glioblastoma , Nanotubos de Carbono , Humanos , Animales , Ratones , Porcinos , Temozolomida , Glioblastoma/tratamiento farmacológico , Colorantes
6.
J Math Biol ; 86(1): 11, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36478092

RESUMEN

Recent progress in nanotechnology-enabled sensors that can be placed inside of living plants has shown that it is possible to relay and record real-time chemical signaling stimulated by various abiotic and biotic stresses. The mathematical form of the resulting local reactive oxygen species (ROS) wave released upon mechanical perturbation of plant leaves appears to be conserved across a large number of species, and produces a distinct waveform from other stresses including light, heat and pathogen-associated molecular pattern (PAMP)-induced stresses. Herein, we develop a quantitative theory of the local ROS signaling waveform resulting from mechanical stress in planta. We show that nonlinear, autocatalytic production and Fickian diffusion of H2O2 followed by first order decay well describes the spatial and temporal properties of the waveform. The reaction-diffusion system is analyzed in terms of a new approximate solution that we introduce for such problems based on a single term logistic function ansatz. The theory is able to describe experimental ROS waveforms and degradation dynamics such that species-dependent dimensionless wave velocities are revealed, corresponding to subtle changes in higher moments of the waveform through an apparently conserved signaling mechanism overall. This theory has utility in potentially decoding other stress signaling waveforms for light, heat and PAMP-induced stresses that are similarly under investigation. The approximate solution may also find use in applied agricultural sensing, facilitating the connection between measured waveform and plant physiology.


Asunto(s)
Peróxido de Hidrógeno , Estrés Mecánico
7.
Nat Commun ; 13(1): 5734, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36229440

RESUMEN

Spontaneous oscillations on the order of several hertz are the drivers of many crucial processes in nature. From bacterial swimming to mammal gaits, converting static energy inputs into slowly oscillating power is key to the autonomy of organisms across scales. However, the fabrication of slow micrometre-scale oscillators remains a major roadblock towards fully-autonomous microrobots. Here, we study a low-frequency oscillator that emerges from a collective of active microparticles at the air-liquid interface of a hydrogen peroxide drop. Their interactions transduce ambient chemical energy into periodic mechanical motion and on-board electrical currents. Surprisingly, these oscillations persist at larger ensemble sizes only when a particle with modified reactivity is added to intentionally break permutation symmetry. We explain such emergent order through the discovery of a thermodynamic mechanism for asymmetry-induced order. The on-board power harvested from the stabilised oscillations enables the use of electronic components, which we demonstrate by cyclically and synchronously driving a microrobotic arm. This work highlights a new strategy for achieving low-frequency oscillations at the microscale, paving the way for future microrobotic autonomy.


Asunto(s)
Peróxido de Hidrógeno , Natación , Animales , Mamíferos , Movimiento (Física)
8.
Nat Nanotechnol ; 17(6): 643-652, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35637357

RESUMEN

Fluorescent nanosensors hold the potential to revolutionize life sciences and medicine. However, their adaptation and translation into the in vivo environment is fundamentally hampered by unfavourable tissue scattering and intrinsic autofluorescence. Here we develop wavelength-induced frequency filtering (WIFF) whereby the fluorescence excitation wavelength is modulated across the absorption peak of a nanosensor, allowing the emission signal to be separated from the autofluorescence background, increasing the desired signal relative to noise, and internally referencing it to protect against artefacts. Using highly scattering phantom tissues, an SKH1-E mouse model and other complex tissue types, we show that WIFF improves the nanosensor signal-to-noise ratio across the visible and near-infrared spectra up to 52-fold. This improvement enables the ability to track fluorescent carbon nanotube sensor responses to riboflavin, ascorbic acid, hydrogen peroxide and a chemotherapeutic drug metabolite for depths up to 5.5 ± 0.1 cm when excited at 730 nm and emitting between 1,100 and 1,300 nm, even allowing the monitoring of riboflavin diffusion in thick tissue. As an application, nanosensors aided by WIFF detect the chemotherapeutic activity of temozolomide transcranially at 2.4 ± 0.1 cm through the porcine brain without the use of fibre optic or cranial window insertion. The ability of nanosensors to monitor previously inaccessible in vivo environments will be important for life-sciences research, therapeutics and medical diagnostics.


Asunto(s)
Nanotubos de Carbono , Animales , Fluorescencia , Colorantes Fluorescentes , Peróxido de Hidrógeno , Ratones , Riboflavina , Porcinos
9.
ACS Nano ; 15(8): 13683-13691, 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34398614

RESUMEN

Macrophages are a critical part of the human immune response, and their collective heterogeneity is implicated in disease progression and prevention. A nondestructive, label-free tool does not currently exist for profiling the dynamic, antigenic responses of single macrophages in a collection to correlate with specific molecular expression and correlated biophysical properties at the cellular level, despite the potential for diagnosis and therapeutics. Herein, we develop a nanosensor chemical cytometry (NCC) that can profile the heterogeneity of inducible nitric oxide synthase (iNOS) responses from macrophage populations. By integrating a near-infrared (nIR) fluorescent nanosensor array and collagen layer with microfluidics, the cellular lensing effect of the macrophage was utilized to characterize both nitric oxide (NO) efflux and refractive index (RI) changes at a single-cell level. Using a parallel, multichannel approach, distinct iNOS heterogeneities of macrophages can be monitored at an attomolar (10-18 mol) sensitivity in a nondestructive and real-time manner with a throughput of exceeding the 200 cells/frame. We demonstrate that estimated mean NO efflux rates of macrophage populations are elevated from 342 (σ = 199) to 464 (σ = 206) attomol/cell·hr with a 3% larger increase in the heterogeneity, and estimated RI of macrophage decrease from 1.366 (σ = 0.015) to 1.359 (σ = 0.009) with trimodal subpopulations under lipopolysaccharide (LPS) activation. These measured values are also in good agreement with Griess assay results and previously reported measurements. This work provides an efficient strategy for single-cell analysis of macrophage populations for cellular manufacturing and biopharmaceutical engineering.


Asunto(s)
Óxido Nítrico Sintasa , Óxido Nítrico , Humanos , Óxido Nítrico/farmacología , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa/farmacología , Macrófagos/metabolismo , Lipopolisacáridos/farmacología
10.
Small ; 17(31): e2100540, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34176216

RESUMEN

Vitamins such as riboflavin and ascorbic acid are frequently utilized in a range of biomedical applications as drug delivery targets, fluidic tracers, and pharmaceutical excipients. Sensing these biochemicals in the human body has the potential to significantly advance medical research and clinical applications. In this work, a nanosensor platform consisting of single-walled carbon nanotubes (SWCNTs) with nanoparticle corona phases engineered to allow for the selective molecular recognition of ascorbic acid and riboflavin, is developed. The study provides a methodological framework for the implementation of colloidal SWCNT nanosensors in an intraperitoneal SKH1-E murine model by addressing complications arising from tissue absorption and scattering, mechanical perturbations, as well as sensor diffusion and interactions with the biological environment. Nanosensors are encapsulated in a polyethylene glycol diacrylate hydrogel and a diffusion model is utilized to validate analyte transport and sensor responses to local concentrations at the boundary. Results are found to be reproducible and stable after exposure to 10% mouse serum even after three days of in vivo implantation. A geometrical encoding scheme is used to reference sensor pairs, correcting for in vivo optical and mechanical artifacts, resulting in an order of magnitude improvement of p-value from 0.084 to 0.003 during analyte sensing.


Asunto(s)
Nanopartículas , Nanotubos de Carbono , Animales , Colorantes , Ratones , Vitaminas
11.
ACS Nano ; 15(5): 8803-8812, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-33960771

RESUMEN

Autonomous electronic microsystems smaller than the diameter of a human hair (<100 µm) are promising for sensing in confined spaces such as microfluidic channels or the human body. However, they are difficult to implement due to fabrication challenges and limited power budget. Here we present a 60 × 60 µm electronic microsystem platform, or SynCell, that overcomes these issues by leveraging the integration capabilities of two-dimensional material circuits and the low power consumption of passive germanium timers, memory-like chemical sensors, and magnetic pads. In a proof-of-concept experiment, we magnetically positioned SynCells in a microfluidic channel to detect putrescine. After we extracted them from the channel, we successfully read out the timer and sensor signal, the latter of which can be amplified by an onboard transistor circuit. The concepts developed here will be applicable to microsystems targeting a variety of applications from microfluidic sensing to biomedical research.

12.
Nat Commun ; 12(1): 3079, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035262

RESUMEN

Nanosensors have proven to be powerful tools to monitor single cells, achieving spatiotemporal precision even at molecular level. However, there has not been way of extending this approach to statistically relevant numbers of living cells. Herein, we design and fabricate nanosensor array in microfluidics that addresses this limitation, creating a Nanosensor Chemical Cytometry (NCC). nIR fluorescent carbon nanotube array is integrated along microfluidic channel through which flowing cells is guided. We can utilize the flowing cell itself as highly informative Gaussian lenses projecting nIR profiles and extract rich information. This unique biophotonic waveguide allows for quantified cross-correlation of biomolecular information with various physical properties and creates label-free chemical cytometer for cellular heterogeneity measurement. As an example, the NCC can profile the immune heterogeneities of human monocyte populations at attomolar sensitivity in completely non-destructive and real-time manner with rate of ~600 cells/hr, highest range demonstrated to date for state-of-the-art chemical cytometry.


Asunto(s)
Linfocitos B/metabolismo , Técnicas Biosensibles/métodos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Microfluídica/métodos , Nanotecnología/métodos , Nanotubos de Carbono/química , Algoritmos , Transporte Biológico , Línea Celular , Colorantes Fluorescentes/química , Células HEK293 , Humanos , Peróxido de Hidrógeno/metabolismo , Espectrometría Raman/métodos , Células U937
13.
Small ; 17(48): e2006752, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33675290

RESUMEN

Carbon nanomaterials have extraordinary thermal properties, such as high conductivity and stability. Nanocarbon combined with phase change materials (PCMs) can yield exceptionally high thermal effusivity composites optimal for thermal energy harvesting. The progress in synthesis and processing of high effusivity materials, and their application in resonant energy harvesting from temperature variations is reviewed.


Asunto(s)
Calor , Nanoestructuras , Carbono , Temperatura , Conductividad Térmica
14.
ACS Nano ; 15(2): 2778-2790, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33512159

RESUMEN

Although the structure and properties of water under conditions of extreme confinement are fundamentally important for a variety of applications, they remain poorly understood, especially for dimensions less than 2 nm. This problem is confounded by the difficulty in controlling surface roughness and dimensionality in fabricated nanochannels, contributing to a dearth of experimental platforms capable of carrying out the necessary precision measurements. In this work, we utilize an experimental platform based on the interior of lithographically segmented, isolated single-walled carbon nanotubes to study water under extreme nanoscale confinement. This platform generates multiple copies of nanotubes with identical chirality, of diameters from 0.8 to 2.5 nm and lengths spanning 6 to 160 µm, that can be studied individually in real time before and after opening, exposure to water, and subsequent water filling. We demonstrate that, under controlled conditions, the diameter-dependent blue shift of the Raman radial breathing mode (RBM) between 1 and 8 cm-1 measures an increase in the interior mechanical modulus associated with liquid water filling, with no response from exterior water exposure. The observed RBM shift with filling demonstrates a non-monotonic trend with diameter, supporting the assignment of a minimum of 1.81 ± 0.09 cm-1 at 0.93 ± 0.08 nm with a nearly linear increase at larger diameters. We find that a simple hard-sphere model of water in the confined nanotube interior describes key features of the diameter-dependent modulus change of the carbon nanotube and supports previous observations in the literature. Longer segments of 160 µm show partial filling from their ends, consistent with pore clogging. These devices provide an opportunity to study fluid behavior under extreme confinement with high precision and repeatability.

15.
Nat Plants ; 6(4): 404-415, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32296141

RESUMEN

Decoding wound signalling in plants is critical for understanding various aspects of plant sciences, from pest resistance to secondary metabolite and phytohormone biosynthesis. The plant defence responses are known to primarily involve NADPH-oxidase-mediated H2O2 and Ca2+ signalling pathways, which propagate across long distances through the plant vasculature and tissues. Using non-destructive optical nanosensors, we find that the H2O2 concentration profile post-wounding follows a logistic waveform for six plant species: lettuce (Lactuca sativa), arugula (Eruca sativa), spinach (Spinacia oleracea), strawberry blite (Blitum capitatum), sorrel (Rumex acetosa) and Arabidopsis thaliana, ranked in order of wave speed from 0.44 to 3.10 cm min-1. The H2O2 wave tracks the concomitant surface potential wave measured electrochemically. We show that the plant RbohD glutamate-receptor-like channels (GLR3.3 and GLR3.6) are all critical to the propagation of the wound-induced H2O2 wave. Our findings highlight the utility of a new type of nanosensor probe that is species-independent and capable of real-time, spatial and temporal biochemical measurements in plants.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Nanotubos de Carbono , Plantas/metabolismo , Arabidopsis/metabolismo , Técnicas Biosensibles , Mutación , NADPH Oxidasas/metabolismo , Dispositivos Ópticos , Enfermedades de las Plantas , Plantas/enzimología , Transducción de Señal
16.
Nano Lett ; 20(5): 3067-3078, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32058726

RESUMEN

Nanostructured fibers provide a basis for a unique class of multifunctional textiles, composites, and membrane applications, including those capable of chromatic modulating because of their high aspect ratio, surface area, and processing capability. Here in, we utilize two-dimensional (2D) materials including molybdenum disulfide (MoS2) and hexagonal boron nitride (hBN) to generate single layer Archimedean scroll fibers, possessing cross sections formed from a single 2D molecular layer. Chemical vapor deposited (CVD) monolayer MoS2 (0.29-0.33% in volume) and 226-259 nm-thick poly(methyl methacrylate) (PMMA) were used to create Bragg reflector fibers, exploiting the anisotropic function, exhibiting reflection at 630-709 nm, and verifying the highly ordered nanoinclusions. The Bragg reflectors show a memory response to heating and cooling, which switches the reflection wavelength from 629 to 698 nm. We simulate the reflection and transmission spectra of MoS2/PMMA and MoS2/polydimethylsiloxane layered composites to provide the design of scroll fiber composites using the transfer matrix methods. Moreover, we demonstrate the incorporation of a few-layer CVD hBN into the scroll fiber composite that emits photons at 576 nm. The highly oriented layered structures extend the capability of the fiber nanocomposites to take advantage of anisotropic optical, electrical, and thermal properties unique to 2D materials.

17.
Nat Nanotechnol ; 14(5): 447-455, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30804482

RESUMEN

Plant genetic engineering is an important tool used in current efforts in crop improvement, pharmaceutical product biosynthesis and sustainable agriculture. However, conventional genetic engineering techniques target the nuclear genome, prompting concerns about the proliferation of foreign genes to weedy relatives. Chloroplast transformation does not have this limitation, since the plastid genome is maternally inherited in most plants, motivating the need for organelle-specific and selective nanocarriers. Here, we rationally designed chitosan-complexed single-walled carbon nanotubes, utilizing the lipid exchange envelope penetration mechanism. The single-walled carbon nanotubes selectively deliver plasmid DNA to chloroplasts of different plant species without external biolistic or chemical aid. We demonstrate chloroplast-targeted transgene delivery and transient expression in mature Eruca sativa, Nasturtium officinale, Nicotiana tabacum and Spinacia oleracea plants and in isolated Arabidopsis thaliana mesophyll protoplasts. This nanoparticle-mediated chloroplast transgene delivery tool provides practical advantages over current delivery techniques as a potential transformation method for mature plants to benefit plant bioengineering and biological studies.


Asunto(s)
Arabidopsis/genética , Quitosano/química , Cloroplastos/genética , Técnicas de Transferencia de Gen , Nanotubos de Carbono/química , Nasturtium/genética , Nicotiana/genética , Plantas Modificadas Genéticamente/genética , Spinacia oleracea/genética , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Expresión Génica , Nasturtium/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Spinacia oleracea/metabolismo , Nicotiana/metabolismo
18.
ACS Sens ; 4(1): 32-43, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30525471

RESUMEN

In recent decades, biologists have sought to tag animals with various sensors to study aspects of their behavior otherwise inaccessible from controlled laboratory experiments. Despite this, chemical information, both environmental and physiological, remains challenging to collect despite its tremendous potential to elucidate a wide range of animal behaviors. In this work, we explore the design, feasibility, and data collection constraints of implantable, near-infrared fluorescent nanosensors based on DNA-wrapped single-wall carbon nanotubes (SWNT) embedded within a biocompatible poly(ethylene glycol) diacrylate (PEGDA) hydrogel. These sensors are enabled by Corona Phase Molecular Recognition (CoPhMoRe) to provide selective chemical detection for marine organism biologging. Riboflavin, a key nutrient in oxidative phosphorylation, is utilized as a model analyte in in vitro and ex vivo tissue measurements. Nine species of bony fish, sharks, eels, and turtles were utilized on site at Oceanogràfic in Valencia, Spain to investigate sensor design parameters, including implantation depth, sensor imaging and detection limits, fluence, and stability, as well as acute and long-term biocompatibility. Hydrogels were implanted subcutaneously and imaged using a customized, field-portable Raspberry Pi camera system. Hydrogels could be detected up to depths of 7 mm in the skin and muscle tissue of deceased teleost fish ( Sparus aurata and Stenotomus chrysops) and a deceased catshark ( Galeus melastomus). The effects of tissue heterogeneity on hydrogel delivery and fluorescence visibility were explored, with darker tissues masking hydrogel fluorescence. Hydrogels were implanted into a living eastern river cooter ( Pseudemys concinna), a European eel ( Anguilla anguilla), and a second species of catshark ( Scyliorhinus stellaris). The animals displayed no observable changes in movement and feeding patterns. Imaging by high-resolution ultrasound indicated no changes in tissue structure in the eel and catshark. In the turtle, some tissue reaction was detected upon dissection and histopathology. Analysis of movement patterns in sarasa comet goldfish ( Carassius auratus) indicated that the hydrogel implants did not affect swimming patterns. Taken together, these results indicate that this implantable form factor is a promising technique for biologging using aquatic vertebrates with further development. Future work will tune the sensor detection range to the physiological range of riboflavin, develop strategies to normalize sensor signal to account for the optical heterogeneity of animal tissues, and design a flexible, wearable device incorporating optoelectronic components that will enable sensor measurements in moving animals. This work advances the application of nanosensors to organisms beyond the commonly used rodent and zebrafish models and is an important step toward the physiological biologging of aquatic organisms.


Asunto(s)
ADN/química , Hidrogeles/química , Nanotubos de Carbono/química , Polietilenglicoles/química , Riboflavina/análisis , Anguilla , Animales , Técnicas Biosensibles/métodos , ADN/efectos adversos , Femenino , Carpa Dorada , Hidrogeles/efectos adversos , Implantes Experimentales , Límite de Detección , Masculino , Nanotubos de Carbono/efectos adversos , Perciformes , Polietilenglicoles/efectos adversos , Riboflavina/química , Tiburones , Tortugas
19.
Nat Mater ; 17(11): 1005-1012, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30353088

RESUMEN

Graphene and other two-dimensional materials possess desirable mechanical, electrical and chemical properties for incorporation into or onto colloidal particles, potentially granting them unique electronic functions. However, this application has not yet been realized, because conventional top-down lithography scales poorly for producing colloidal solutions. Here, we develop an 'autoperforation' technique that provides a means of spontaneous assembly for surfaces composed of two-dimensional molecular scaffolds. Chemical vapour deposited two-dimensional sheets can autoperforate into circular envelopes when sandwiching a microprinted polymer composite disk of nanoparticle ink, allowing liftoff into solution and simultaneous assembly. The resulting colloidal microparticles have two independently addressable, external Janus faces that we show can function as an intraparticle array of vertically aligned, two-terminal electronic devices. Such particles demonstrate remarkable chemical and mechanical stability and form the basis of particulate electronic devices capable of collecting and storing information about their surroundings, extending nanoelectronics into previously inaccessible environments.

20.
Adv Mater ; 30(46): e1804037, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30368934

RESUMEN

Plants accumulate solid carbon mass and self-repair using atmospheric CO2 fixation from photosynthesis. Synthetic materials capable of mimicking this property can significantly reduce the energy needed to transport and repair construction materials. Here, a gel matrix containing aminopropyl methacrylamide (APMA), glucose oxidase (GOx), and nanoceria-stabilized extracted chloroplasts that is able to grow, strengthen, and self-repair using carbon fixation is demonstrated. Glucose produced from the embedded chloroplasts is converted to gluconolactone (GL) via GOx, polymerizing with APMA to form a continuously expanding and strengthening polymethacrylamide. The extracted spinach chloroplasts exhibit enhanced stability and produce 12 µg GL mg-1 Chl h-1 after optimization of the temporal illumination conditions and the glucose efflux rate, with the insertion of chemoprotective nanoceria inside the chloroplasts. This system achieves an average growth rate of 60 µm3 h-1 per chloroplast under ambient CO2 and illumination over 18 h, thickening with a shear modulus of 3 kPa. This material can demonstrate self-repair using the exported glucose from chloroplasts and chemical crosslinking through the fissures. These results point to a new class of materials capable of using atmospheric CO2 fixation as a regeneration source, finding utility as self-healing coatings, construction materials, and fabrics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...