Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(20): e2309226, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38477513

RESUMEN

Here, an unprecedented phenomenon in which 7-coordinate lanthanide metallomesogens, which align via hydrogen bonds mediated by coordinated H2O molecules, form micellar cubic mesophases at room temperature, creating body-centered cubic (BCC)-type supramolecular spherical arrays, is reported. The results of experiments and molecular dynamics simulations reveal that spherical assemblies of three complexes surrounded by an amorphous alkyl domain spontaneously align in an energetically stable orientation to form the BCC structure. This phenomenon differs greatly from the conventional self-assembling behavior of 6-coordinated metallomesogens, which form columnar assemblies due to strong intermolecular interactions. Since the magnetic and luminescent properties of different lanthanides vary, adding arbitrary functions to spherical arrays is possible by selecting suitable lanthanides to be used. The method developed in this study using 7-coordinate lanthanide metallomesogens as building blocks is expected to lead to the rational development of micellar cubic mesophases.

2.
Inorg Chem ; 62(30): 11897-11909, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37470095

RESUMEN

The seven-coordinate Ho(III) aqua-tris(dibenzoylmethane)(DBM) complex, referred to as Ho-(DBM)3·H2O, was first reported in the late 1960s. It has a threefold symmetric structure, with Ho at the center of three dibenzoylmethane ligands and hydrogen-bonded water to ligands. It is considered that the hydrogen bonds between the water molecule and the ligands surrounding Ho play an important role in the formation of its symmetrical structure. In this work, we developed new force-field parameters for classical molecular dynamics (CMD) simulations to theoretically elucidate the structure and dynamics of Ho-(DBM)3·H2O. To develop the force field, structural optimization and molecular dynamics were performed on the basis of ab initio calculations using the plane-wave pseudopotential method. The force-field parameters for CMD were then optimized to reproduce the data obtained from ab initio calculations. Validation of the developed force field showed good agreement with the experimental crystalline structure and ab initio data. The vibrational properties of water in Ho-(DBM)3·H2O were investigated by comparison with bulk liquid water. The vibrational motion of water was found to have a characteristic mode originating from stationary rotational motion along the c-axis of Ho(III) aqua-tris(dibenzoylmethane). Contrary to expectations, the hydrogen-bond dynamics of water in Ho-(DBM)3·H2O were found to be almost equivalent to those of bulk liquid water except for librational motion. This development route for force-field parameters for CMD and the establishment of water dynamics can advance the understanding of water-coordinated metal complexes with high coordination numbers such as Ho-(DBM)3·H2O.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...