Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
World Neurosurg ; 182: e486-e492, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38042289

RESUMEN

BACKGROUND: Stereoelectroencephalography (SEEG) remains critical in guiding epilepsy surgery. Robot-assisted techniques have shown promise in improving SEEG implantation outcomes but have not been directly compared. In this single-institution series, we compared ROSA and Stealth AutoGuide robots in pediatric SEEG implantation. METHODS: We retrospectively reviewed 21 sequential pediatric SEEG implantations consisting of 6 ROSA and 15 AutoGuide procedures. We determined mean operative time, time per electrode, root mean square (RMS) registration error, and surgical complications. Three-dimensional radial distances were calculated between each electrode's measured entry and target points with respective errors from the planned trajectory line. RESULTS: Mean overall/per electrode operating time was 73.5/7.5 minutes for ROSA and 126.1/10.9 minutes for AutoGuide (P = 0.030 overall, P = 0.082 per electrode). Mean RMS registration error was 0.77 mm (0.55-0.93 mm) for ROSA and 0.6 mm (0.2-1.0 mm) for AutoGuide (P = 0.26). No procedures experienced complications. The mean radial (entry point error was 1.23 ± 0.11 mm for ROSA and 2.65 ± 0.12 mm for AutoGuide (P < 0.001), while the mean radial target point error was 1.86 ± 0.15 mm for ROSA and 3.25 ± 0.16 mm for AutoGuide (P < 0.001). CONCLUSIONS: Overall operative time was greater for AutoGuide procedures, although there was no statistically significant difference in time per electrode. Both systems are highly accurate with no significant RMS error difference. While the ROSA robot yielded significantly lower entry and target point errors, both robots are safe and reliable for deep electrode insertion in pediatric epilepsy.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Procedimientos Quirúrgicos Robotizados , Niño , Humanos , Procedimientos Quirúrgicos Robotizados/métodos , Estudios Retrospectivos , Electroencefalografía/métodos , Técnicas Estereotáxicas , Epilepsia/cirugía , Electrodos Implantados , Epilepsia Refractaria/cirugía
2.
Radiat Res ; 177(6): 751-65, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22559204

RESUMEN

Radiation-induced bystander effects have been extensively studied at low doses, since evidence of bystander induced cell killing and other effects on unirradiated cells were found to be predominant at doses up to 0.5 Gy. Therefore, few studies have examined bystander effects induced by exposure to higher doses of radiation, such as spatially fractionated radiation (GRID) treatment. In the present study, we evaluate the ability of GRID treatment to induce changes in GRID adjacent (bystander) regions, in two different murine carcinoma cell lines following exposure to a single irradiation dose of 10 Gy. Murine SCK mammary carcinoma cells and SCCVII squamous carcinoma cells were irradiated using a brass collimator to create a GRID pattern of nine circular fields 12 mm in diameter with a center-to-center distance of 18 mm. Similar to the typical clinical implementation of GRID, this is approximately a 50:50 ratio of direct and bystander exposure. We also performed experiments by irradiating separate cultures and transferring the medium to unirradiated bystander cultures. Clonogenic survival was evaluated in both cell lines to determine the occurrence of radiation-induced bystander effects. For the purpose of our study, we have defined bystander cells as GRID adjacent cells that received approximately 1 Gy scatter dose or unirradiated cells receiving conditioned medium from irradiated cells. We observed significant bystander killing of cells adjacent to the GRID irradiated regions compared to sham treated controls. We also observed bystander killing of SCK and SCCVII cells cultured in conditioned medium obtained from cells irradiated with 10 Gy. Therefore, our results confirm the occurrence of bystander effects following exposure to a high-dose of radiation and suggest that cell-to-cell contact is not required for these effects. In addition, the gene expression profile for DNA damage and cellular stress response signaling in SCCVII cells after GRID exposure was studied. The occurrence of GRID-induced bystander gene expression changes in significant numbers of DNA damage and cellular stress response signaling genes, providing molecular evidence for possible mechanisms of bystander cell killing.


Asunto(s)
Efecto Espectador/efectos de la radiación , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Fraccionamiento de la Dosis de Radiación , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Animales , Efecto Espectador/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de la radiación , Daño del ADN , Relación Dosis-Respuesta en la Radiación , Dosimetría por Película , Ratones , Estrés Oxidativo/efectos de la radiación , Transducción de Señal/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...