Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(19)2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37836816

RESUMEN

The toxic effects of antimony pose risks to human health. Therefore, simple analytical techniques for its widescale monitoring in water sources are in demand. In this study, a sensitive microplate apta-enzyme assay for Sb3+ detection was developed. The biotinylated aptamer A10 was hybridized with its complementary biotinylated oligonucleotide T10 and then immobilized on the surface of polysterene microplate wells. Streptavidin labeled with horseradish peroxidase (HRP) bound to the biotin of a complementary complex and transformed the 3,3',5,5'-tetramethylbenzidine substrate, generating an optical signal. Sb3+ presenting in the sample bounded to an A10 aptamer, thus releasing T10, preventing streptavidin-HRP binding and, as a result, reducing the optical signal. This effect allowed for the detection of Sb3+ with a working range from 0.09 to 2.3 µg/mL and detection limit of 42 ng/mL. It was established that the presence of Ag+ at the stage of A10/T10 complex formation promoted dehybridization of the aptamer A10 and the formation of the A10/Sb3+ complex. The working range of the Ag+-enhanced microplate apta-enzyme assay for Sb3+ was determined to be 8-135 ng/mL, with a detection limit of 1.9 ng/mL. The proposed enhanced approach demonstrated excellent selectivity against other cations/anions, and its practical applicability was confirmed through an analysis of drinking and spring water samples with recoveries of Sb3+ in the range of 109.0-126.2% and 99.6-106.1%, respectively.


Asunto(s)
Aptámeros de Nucleótidos , Plata , Humanos , Estreptavidina , Oligonucleótidos , Cationes , Pruebas de Enzimas/métodos , Peroxidasa de Rábano Silvestre , Agua , Límite de Detección
2.
Materials (Basel) ; 16(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36837103

RESUMEN

Surface-enhanced Raman scattering (SERS) is considered an efficient technique providing high sensitivity and fingerprint specificity for the detection of pesticide residues. Recent developments in SERS-based detection aim to create flexible plasmonic substrates that meet the requirements for non-destructive analysis of contaminants on curved surfaces by simply wrapping or wiping. Herein, we reported a flexible SERS substrate based on cellulose fiber (CF) modified with silver nanostructures (AgNS). A silver film was fabricated on the membrane surface with an in situ silver mirror reaction leading to the formation of a AgNS-CF substrate. Then, the substrate was decorated through in situ synthesis of raspberry-like silver nanostructures (rAgNS). The SERS performance of the prepared substrate was tested using 4-mercaptobenzoic acid (4-MBA) as a Raman probe and compared with that of the CF-based plasmonic substrates. The sensitivity of the rAgNS/AgNS-CF substrate was evaluated by determining the detection limit of 4-MBA and an analytical enhancement factor, which were 10 nM and ~107, respectively. Further, the proposed flexible rAgNS/AgNS-CF substrate was applied for SERS detection of malathion. The detection limit for malathion reached 0.15 mg/L, which meets the requirements about its maximum residue level in food. Thus, the characteristics of the rAgNS/AgNS-CF substrate demonstrate the potential of its application as a label-free and ready-to-use sensing platform for the SERS detection of trace hazardous substances.

3.
Crit Rev Anal Chem ; : 1-16, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36692442

RESUMEN

Surface-enhanced Raman spectroscopy (SERS) is a powerful tool and an up-to-date method of analytical chemistry due to its high sensitivity and fingerprint recognition capabilities. Nowadays SERS due to its label-free detection capabilities is being actively developed in medical fields, for example in the analysis of biologically important substances in different matrixes, for potential on-site detection of toxic substances, food safety, and so on. To get the SERS signal, it is necessary the presence of plasmonic nanostructures in the SERS substrates. Electrospun nanofibers have been an attractive alternative to SERS-platforms due to the diversity of advantages, including ease of preparation, structure flexibility, and others. In this review, we summarized the methods of plasmonic nanostructures incorporating substrate based on electrospun nanofibers. Also, the analytical application of SERS-active electrospun nanofibers with embedded nanostructures focused on biologically significant molecules is observed in detail. Finally, the future outlook in the application of these substrates in bioanalysis as the most promising area in analytical chemistry is presented.

4.
Biosensors (Basel) ; 12(11)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36354511

RESUMEN

The use of a large amount of toxic synthetic materials leads to an increase in the pollution of environmental objects. Phthalates are compounds structurally related to esters of phthalic acid that are widely used in the manufacturing of synthetic packaging materials as plasticizers. Their danger is conditioned by leaching into the environment and penetrating into living organisms with negative consequences and effects on various organs and tissues. This work presents the first development of lateral flow immunoassay to detect dibutyl phthalate, one of the most common representatives of the phthalates group. To form a test zone, a hapten-protein conjugate was synthesized, and gold nanoparticles conjugated with antibodies to dibutyl phthalate were used as a detecting conjugate. The work includes the preparation of immunoreagents, selectivity investigation, and the study of the characteristics of the medium providing a reliable optical signal. Under the selected conditions for the analysis, the detection limit was 33.4 ng/mL, and the working range of the determined concentrations was from 42.4 to 1500 ng/mL. Time of the assay-15 min. The developed technique was successfully applied to detect dibutyl phthalate in natural waters with recovery rates from 75 to 115%.


Asunto(s)
Dibutil Ftalato , Nanopartículas del Metal , Dibutil Ftalato/análisis , Oro , Inmunoensayo/métodos
5.
Chemistry ; 28(12): e202104481, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35025110

RESUMEN

Aptamer selection against novel infections is a complicated and time-consuming approach. Synergy can be achieved by using computational methods together with experimental procedures. This study aims to develop a reliable methodology for a rational aptamer in silico et vitro design. The new approach combines multiple steps: (1) Molecular design, based on screening in a DNA aptamer library and directed mutagenesis to fit the protein tertiary structure; (2) 3D molecular modeling of the target; (3) Molecular docking of an aptamer with the protein; (4) Molecular dynamics (MD) simulations of the complexes; (5) Quantum-mechanical (QM) evaluation of the interactions between aptamer and target with further analysis; (6) Experimental verification at each cycle for structure and binding affinity by using small-angle X-ray scattering, cytometry, and fluorescence polarization. By using a new iterative design procedure, structure- and interaction-based drug design (SIBDD), a highly specific aptamer to the receptor-binding domain of the SARS-CoV-2 spike protein, was developed and validated. The SIBDD approach enhances speed of the high-affinity aptamers development from scratch, using a target protein structure. The method could be used to improve existing aptamers for stronger binding. This approach brings to an advanced level the development of novel affinity probes, functional nucleic acids. It offers a blueprint for the straightforward design of targeting molecules for new pathogen agents and emerging variants.


Asunto(s)
Aptámeros de Nucleótidos , COVID-19 , Aptámeros de Nucleótidos/química , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , SARS-CoV-2 , Técnica SELEX de Producción de Aptámeros , Glicoproteína de la Espiga del Coronavirus
6.
Anal Chim Acta ; 1155: 338318, 2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33766321

RESUMEN

Detection of lead (II) in water sources is of high importance for protection from this toxic contaminant. This paper presents the development and approbation of a lateral flow test strip of lead (II) with the use of phenylboronic acid as chelating agent and oligocytosine chain as receptor for the formed complexes. To locate the bound lead (II) on the test strip, phenylboronic acid was conjugated with carrier protein (bovine serum albumin) and applied as a binding line. In turn, the oligocytosine was conjugated with gold nanoparticle to provide coloration of the finally formed complexes (bovine serum albumin - phenylboronic acid - lead (II) - oligocytosine - gold nanoparticle). This combination of two binding molecules provides the «sandwich ¼ assay with direct dependence of label binding from the analyte content. The technique is characterized by high sensitivity (0.05 ng mL-1) and the absence of cross-reactions with other metal ions which are often satellite in natural waters. The developed lateral flow tests were successfully applied for lead (II) detection in water. Time of the assay was 5 min. The reached parameters confirm efficiency of the proposed technique for rapid and non-laborious testing under nonlaboratory conditions.


Asunto(s)
Oro , Nanopartículas del Metal , Ácidos Borónicos , Plomo
7.
Anal Methods ; 13(2): 250-257, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33355543

RESUMEN

The development of analytical methods for the determination of metal ions in water is one of the priority tasks for efficient environmental monitoring. The use of modified gold nanoparticles and the colorimetric detection of their aggregation initiated by ions binding with specific receptors on the nanoparticle surface has high potential for simple testing. However, the limits of this approach and the parameters determining the assay sensitivity are not clear, and the possibilities of different assay formats are estimated only empirically. We have proposed a mathematical description of the aggregation processes in the assay and have estimated the detection limits of an aptamer-based assay of Pb2+ ions theoretically and experimentally. In the studied assay, gold nanoparticles modified with G,T-enriched aptamer were used, and their aggregation caused by the interaction with Pb2+ ions was controlled via a color change. The experimentally determined limit of Pb2+ detection was 700 ppb, which was in good agreement with theoretical calculations. An examination of the model showed that the limiting parameter of the assay is the binding constant of the aptamer-Pb2+ ion interaction. To overcome this limitation without searching for alternate receptors, two methods have been proposed, namely additional aggregation-causing components or centrifugation. These approaches lowered the detection limit to 150 ppb and even to 0.4 ppb. The second value accords with regulatory demands for the permissible levels of water source contamination, and the corresponding approach has significant competitive potential due to its rapidity, simple implementation, and the visual assessment of the assay results.

8.
Anal Bioanal Chem ; 412(17): 4023-4036, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32382967

RESUMEN

This review presents the state-of-the-art of optical sensors for determination of biogenic amines (BAs) in food by publications covering about the last 10 years. Interest in the development of rapid and preferably on-site methods for quantification of BAs is based on their important role in implementation and regulation of various physiological processes. At the same time, BAs can develop in different kinds of food by fermentation processes or microbial activity or arise due to contamination, which induces toxicological risks and food poisoning and causes serious health issues. Therefore, various optical chemosensor systems have been devised that are easy to assemble and fast responding and low-cost analytical tools. If amenable to on-site analysis, they are an attractive alternative to existing instrumental analytical methods used for BA determination in food. Hence, also portable sensor systems or dipstick sensors are described based on various probes that typically enable signal readouts such as photometry, reflectometry, luminescence, surface-enhanced Raman spectroscopy, or ellipsometry. The quantification of BAs in real food samples and the design of the sensors are highlighted and the analytical figures of merit are compared. Future instrumental trends for BA sensing point to the use of cell phone-based fully automated optical evaluation and devices that could even comprise microfluidic micro total analysis systems.


Asunto(s)
Aminas Biogénicas/análisis , Análisis de los Alimentos/métodos , Colorimetría/instrumentación , Colorimetría/métodos , Análisis de los Alimentos/instrumentación , Calidad de los Alimentos , Mediciones Luminiscentes/instrumentación , Mediciones Luminiscentes/métodos , Dispositivos Ópticos , Espectrometría Raman/instrumentación , Espectrometría Raman/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...