Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 57(4): 2209-2217, 2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-29412649

RESUMEN

We successfully prepared and crystallographically characterized the first intermolecular charge-transfer (CT)-based vapochromic compound, (EV)(H3O)2[Fe(CN)6] (1-Wet, EV2+: 1,1'-diethyl-4,4'-bipyridine-1,1'-diium), an ethyl viologen-containing CT salt. 1-Wet, which is purple in color, is transformed into a brown powder (1-Dry) upon exposure to methanol vapor, drying over silica gel, or heating; 1-Dry returns to 1-Wet upon exposure to water vapor. These color changes are induced by hydration and dehydration, and gravimetric analyses suggest that 1-Dry is the dehydrated form of 1-Wet, namely, (EV)(H)2[Fe(CN)6]. Interestingly, desorption of water molecules from the oxonium ions in 1-Wet produces isolated protons (H+) that remain in 1-Dry as counter cations. Powder X-ray crystal structure analysis of 1-Dry reveals the presence of very short contacts between the nitrogen atoms of adjacent [Fe(CN)6]4- anions in the crystal. The isolated protons are trapped between the nitrogen atoms of cyanido ligands to form very short N···H···N hydrogen bonds. A detailed comparison of the crystal structures of 1-Wet and 1-Dry reveals that hydration and dehydration induce changes in crystal packing and intermolecular CT interactions, resulting in reversible color changes.

2.
Inorg Chem ; 57(3): 1277-1287, 2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29309129

RESUMEN

A series of [FeII(L)2](BF4)2 compounds were structurally and physically characterized (L = 2,6-bis(2-methylthiazol-4-yl)pyridine). A crystal structure phase transformation from dihydrate compound 1 to anhydrous compound 3 through partially hydrated compounds 2 and 2' upon dehydration was found. Compounds 1 and 3 exhibited a gradual spin crossover (SCO) conversion, whereas compounds 2 and 2' demonstrated two-step and one-step abrupt SCO transitions, respectively. An X-ray single-crystal structural analysis revealed that one-dimensional and two-dimensional Fe cation networks linked by π stacking and sulfur-sulfur interactions were formed in 1 and 3, respectively. A thermodynamic analysis of the magnetic susceptibility for 1, 2', and 3 suggests that the enthalpy differences may govern SCO transition behaviors in the polymorphic compounds 2' and 3. A structural comparison between 1 and 3 indicates that the SCO behavior variations and crystal structure transformation in the present [FeII(L)2](BF4)2 compounds can be interpreted by the relationship between the lattice enthalpies mainly arising from Coulomb interactions between the Fe cations and BF4 anions as in typical ionic crystals.

3.
Nat Commun ; 8(1): 109, 2017 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-28740078

RESUMEN

Despite recent advances in the carbonization of organic crystalline solids like metal-organic frameworks or supramolecular frameworks, it has been challenging to convert crystalline organic solids into ordered carbonaceous frameworks. Herein, we report a route to attaining such ordered frameworks via the carbonization of an organic crystal of a Ni-containing cyclic porphyrin dimer (Ni2-CPDPy). This dimer comprises two Ni-porphyrins linked by two butadiyne (diacetylene) moieties through phenyl groups. The Ni2-CPDPy crystal is thermally converted into a crystalline covalent-organic framework at 581 K and is further converted into ordered carbonaceous frameworks equipped with electrical conductivity by subsequent carbonization at 873-1073 K. In addition, the porphyrin's Ni-N4 unit is also well retained and embedded in the final framework. The resulting ordered carbonaceous frameworks exhibit an intermediate structure, between organic-based frameworks and carbon materials, with advantageous electrocatalysis. This principle enables the chemical molecular-level structural design of three-dimensional carbonaceous frameworks.Carbon-based materials are promising alternatives to noble metal catalysts, but their structures are typically disordered and difficult to control. Here, the authors obtain ordered carbonaceous frameworks with advantageous electrocatalytic properties via the carbonization of nickel-containing porphyrin dimer networks.

5.
Acta Crystallogr C ; 61(Pt 4): m194-6, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15805619

RESUMEN

In the title complex, [Ag2(C7H4NO4)2(C16H16S2)], each Ag(I) atom is trigonally coordinated by one S atom of a 2,11-dithia[3.3]paracyclophane (dtpcp) ligand, and by one N and one O atom of a 6-carboxypyridine-2-carboxylate ligand. Dtpcp acts as a bidentate ligand, bridging two inversion-related AgI atoms to give a dinuclear silver(I) compound. The dinuclear moieties are interconnected via O-H...O hydrogen bonds to form a two-dimensional zigzag sheet. Two such sheets are interwoven via pi-pi interactions between pyridine rings, affording an interwoven bilayer network.

6.
Inorg Chem ; 44(4): 1031-6, 2005 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-15859283

RESUMEN

Three luminescent silver(I)-oligo(phenylenevinylene) complexes, [Ag2(bmsb)(ClO4)2] (1), [Ag2(bmsb)(H2O)4](BF4)2 (2), and [Ag2(bdb)(CF3SO3)2] (3) (bmsb = 1, 4-bis(methylstyryl)benzene, bdb = 4,4'-bis(2, 5-dimethylstryryl)biphenyl), have been synthesized and structurally characterized. Complexes 1 and 2 are 2D networks with unique metallocyclophane motifs. Complex 3 affords a 2D zigzag sheet, in which silver triflates form tubelike double chains and bdb molecules act as linkages. Complex 2 exhibits high electric conductivity because of columnar aromatic stackings formed through intra- and intermolecular pi-pi interactions. Complexes 1-3 in the solid state exhibit luminescence, of which excitation and emission maxima are shifted to longer wavelength as compared to those of the corresponding metal-free ligands.

7.
Inorg Chem ; 44(6): 1686-92, 2005 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-15762695

RESUMEN

Reaction of [2.2]paracyclophane with silver(I) heptafluorobutyrate (AgC3F7CO2) has isolated three novel networks: [Ag4(pcp)(C3F7CO2)4] x pyrene (1), [Ag4(pcp)(C3F7CO2)4] x phen (phen = phenanthrene) (2), and [Ag4(pcp)(C3F7CO2)4] x fluorene (3), and an intercalation compound [Ag4(pcp)(C3F7CO2)4] x 2benzene (4). All the four complexes exhibit two-dimensional (2D) sheet structures in which AgC3F7CO2 form an infinite chain and pcp acts as linkage. 1, 2, and 3 show 2D flat sheets with cavities in which guest molecules are situated, whereas 4 exhibits 2D zigzag layers between which guest benzene molecules are intercalated. Pcp shows mu-di-eta1-eta2 coordination mode in 1, mu-tetra-eta1 coordination mode in 2 and 3, and mu-tetra-eta2 coordination mode in 4. The reversible guest exchanges were observed between complex 1, 2, or 3 and intercalation compound 4. It is unprecedented for metal-organic inclusion complexes that the guest exchange occurs where the guest is the solute molecule. Furthermore, 4 can release the guest, and the original framework was completely recovered after reincorporation of benzene. It should be noted that 4 can incorporate pyrene, phen, and fluorene to give 1, 2, and 3, respectively, after desorption.

8.
Inorg Chem ; 43(16): 4790-2, 2004 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-15285645

RESUMEN

The preparation and physical characterization are reported for a novel single-molecule magnet [Mn(12)O(12)(OAc)(12)(dpp)(4)] (dppH = diphenyl phosphate) with no coordinating water molecules. The crystal structure analysis reveals that there are four five-coordinate Mn(III) ions with Mn.H approaches. Addition of water in CD(2)Cl(2) solution was monitored by (1)H NMR, which showed that H(2)O could coordinate to a vacant site of a five-coordinate Mn(III) ion in solution. The measurements and analyses of magnetization hysteresis and ac magnetic susceptibility indicate that the title complex is a single-molecule magnet with a quantum tunneling behavior, whose ground state was tentatively assigned to S = 10 with g = 1.78 and D = -0.60 K.

9.
Acta Crystallogr C ; 60(Pt 7): m338-40, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15237153

RESUMEN

The title compound, [Mn2(mu-O)(C6H3NO3)2(C5H5N)4].H2O, was isolated from the reaction of 2,6-pyridinedicarboxylic acid with [Mn12O12(CH3COO)16(H2O)4] in pyridine. The dimanganese complex has twofold symmetry; the MnIII atoms are bridged by one oxo and two amidate ligands and show compressed octahedral Jahn-Teller distortion. The molecular packing comprises a three-dimensional structure constructed by means of extensive intermolecular interactions, including three kinds of hydrogen bonds and pi-pi interactions.

10.
Inorg Chem ; 43(2): 633-41, 2004 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-14731025

RESUMEN

Reaction of [2.2]paracyclophane (pcp) with silver(I) trifluoroacetate (AgCF(3)CO(2)) and silver(I) pentafluoroproprionate (AgC(2)F(5)CO(2)) has led to isolation of three novel intercalation polymers: [Ag(4)(pcp)(CF(3)CO(2))(4)](C(6)H(6)) (1), [Ag(4)(pcp)(CF(3)CO(2))(4)](C(6)H(3)Me(3)) (2), and [Ag(4)(pcp)(C(2)F(5)CO(2))(4)](pcp) (3). Structure studies using single crystal X-ray diffraction have shown that all compounds contain two-dimensional layered frameworks based on cation-pi interactions, in which pcp exhibits an unprecedented micro-tetra-eta(2) coordination mode. Guest molecules which weakly interact with the host pcp via C-H.pi interactions are intercalated between layers. The guest-eliminated complexes (1a and 2a) and guest-reincorporated ones (1b or 1c and 2b or 2c), accompanied by small structural changes, were confirmed by (1)H NMR, thermogravimetric analysis, mass spectra, and X-ray powder diffraction patterns. The structural changes from 1 --> 1a --> 1c (=1) can take place reversibly in the process of exposure of 1a to benzene vapor. The original framework of complex 2 is also completely recovered by immersing 2a in mesitylene as well as exposing it to mesitylene vapor.

11.
Inorg Chem ; 42(8): 2553-8, 2003 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-12691561

RESUMEN

As a continuation of the study on the construction of the multidecker aromatic compounds with pi-pi interactions, the anthracene derivatives 9,10-dimethylanthracene (dman), 9,10-diphenylanthracene (dpan), and 7,12-dimethylbenz[a]anthracene (dmban) have been studied toward complexation with the silver(I) ion. The crystal structures of [Ag(dman)(0.5)(p-xylene)(ClO(4))], [Ag(2)(dpan)(0.5)(C(6)H(6))(0.5)(CF(3)SO(3))(2)], and [Ag(2)(dmban)(2)(ClO(4))(2)](p-xylene), together with the metal-free ligand dpan, have been determined by single-crystal X-ray diffraction. These pi-electron-rich aromatic compounds are found to have great promise as an approach to the effective self-assembly of high nuclearity in a multilayer fashion.

12.
Inorg Chem ; 42(6): 1928-34, 2003 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-12639126

RESUMEN

Five novel silver(I) coordination polymers with cis-1,2-dicyano-1,2-bis(2,4,5-trimethyl-3- thienyl)ethene (cis-dbe) were synthesized and are characterized in this paper. Treatment of AgCF(3)SO(3) or AgCF(3)CO(2) with cis-dbe afforded [Ag(2)(cis-dbe)(CF(3)SO(3))(2)] (1) and [Ag(2)(cis-dbe)(CF(3)CO(2))(2)] (2), and both complexes exhibit a 1-D infinite chain structure with two cyano groups and two thienyl groups of the ligand bridging four metal ions. Reaction of AgC(n)()F(2)(n)(+1)CO(2) with cis-dbe gave rise to an unprecedented cocrystallization of a 2-D sheet structure, [Ag(2)(cis-dbe)(C(n)F(2)(n)(+1)CO(2))(2)], where n = 2 (3), 3 (4), and 4 (5). Upon irradiation with 450 nm light, these five silver(I) complexes turned orange or red from yellow, and the color reverted to yellow on exposure to 560 nm light, indicative of the reversible cyclization/ring-opening reaction occurring in the crystalline phase. Furthermore, different anions gave not only the different structural dimensions but also the different photoresponsive patterns. The correlation between the crystal structures and the photochromic reactivity is discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...