Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 51(11): 4510-4521, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35234225

RESUMEN

The reaction of 2,6-diformyl-4-methylphenol, 4-methoxybenzoylhydrazine and Co(OAc)2·4H2O in 1 : 2 : 2 mole ratio in methanol under aerobic conditions produced in 61% yield a tetranuclear complex having the molecular formula [CoIICoIII(µ-OAc)(µ3-OH)(µ-L)]2 where OAc- and L3- represent acetate and N',N''-(5-methyl-2-oxido-1,3-phenylene)bis(methan-1-yl-1-ylidene)bis(4-methoxybenzoylhydrazonate), respectively. The elemental analysis and the mass spectrometric data confirmed the molecular formula of the complex. It is electrically non-conducting and paramagnetic. The complex crystallized as acetonitrile solvate. The X-ray structure shows that each Co(II) centre has a distorted square-pyramidal NO4 coordination sphere, while each Co(III) centre is in a distorted octahedral NO5 environment. The four metal atoms and the four bridging O-atoms form an open cubane type Co4O4 motif. In the crystal lattice, self-assembly of the solvated complex via intermolecular O-H⋯O interaction leads to a two-dimensional network structure. The infrared and electronic spectroscopic features of the complex are consistent with its molecular structure. Cryomagnetic measurements together with theoretical calculations suggest the presence of easy-axis anisotropy for the square-pyramidal Co(II) centres. The complex is redox-active and displays metal centred oxidation and reduction responses on the anodic and cathodic sides, respectively, of the Ag/AgCl electrode. Bifunctional heterogeneous electrocatalytic activity of the complex towards O2 and H2 evolution reactions (OER and HER) in neutral aqueous medium has been explored in detail.

2.
Inorg Chem ; 55(5): 2085-90, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26881286

RESUMEN

Two isostructural densely packed squarato-bridged lanthanide-based 3D metal-organic frameworks (MOFs) [Ln5(µ3-OH)5(µ3-O)(CO3)2(HCO2)2(C4O4)(H2O)2] [Ln = Gd (1) and Dy (2)] show giant cryogenic magnetic refrigeration (for 1) and slow magnetic relaxation (for 2). The structural analyses reveal the presence of a self-assembled crown-shaped building unit with a cubane-based rectangular moiety that leads to a special array of metal centers in 3D space in the complexes. Magnetic investigations confirm that complex 1 exhibits one of the largest cryogenic magnetocaloric effects among the molecular magnetic refrigerant materials reported so far (-ΔSm = 64.0 J kg(-1) K(-1) for ΔH = 9 T at 3 K). The cryogenic cooling effect (of 1) is also quite comparable with that of the commercially used magnetic refrigerant gadolinium-gallium garnet, whereas for complex 2, slow relaxation of magnetization was observed below 10 K.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA