Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2479: 71-84, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35583733

RESUMEN

Recombineering approaches exploiting the bacteriophage λ Red recombination functions are widely used for versatile modification of eukaryotic genes carried by bacterial artificial chromosomes (BACs) in E. coli. Whereas BAC transformation provides a simple means for integration of modified genes into the genomes of animal cells to generate knock-in and knockout lines, successful application of this strategy is hampered by low frequency of homologous recombination in higher plants. However, plant cells can be transformed at a high frequency using the transferred DNA (T-DNA) of Agrobacterium, which is stably and randomly integrated into the plant genome. The function of plant genes that are modified by recombineering and transferred by Agrobacterium T-DNA vectors into plant cells can thus be suitably studied using genetic complementation of knockout mutations induced by either T-DNA insertions or genome editing with T-DNA-based Crisp/Cas9 constructs. Here we describe two recombineering protocols for modification and transfer of plant genes from BACs into Agrobacterium T-DNA plant transformation vectors. The first protocol uses a conditional suicide ccdB gene cassette to assist the genetic complementation assays by generation of point mutations, deletions, and insertions at any gene position. The second "turbo"-recombineering protocol exploits various I-SceI insertion cassettes for fusing of fluorescent protein tags to the plant gene products to facilitate the characterization of their in vivo interacting partners by affinity purification, mass spectrometry, and cellular localization studies.


Asunto(s)
Genes de Plantas , Ingeniería Genética , Animales , Cromosomas Artificiales Bacterianos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Edición Génica , Ingeniería Genética/métodos , Humanos
2.
Int J Mol Sci ; 21(3)2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31979421

RESUMEN

SWI/SNF ATP-dependent chromatin remodeling complexes (CRCs) play important roles in the regulation of transcription, cell cycle, DNA replication, repair, and hormone signaling in eukaryotes. The core of SWI/SNF CRCs composed of a SWI2/SNF2 type ATPase, a SNF5 and two of SWI3 subunits is sufficient for execution of nucleosome remodeling in vitro. The Arabidopsis genome encodes four SWI2/SNF2 ATPases, four SWI3, a single SNF5 and two SWP73 subunits. Genes of the core SWI/SNF components have critical but not fully overlapping roles during plant growth, embryogenesis, and sporophyte development. Here we show that the Arabidopsis swi3c mutant exhibits a phenotypic reversion when grown at lower temperature resulting in partial restoration of its embryo, root development and fertility defects. Our data indicates that the swi3c mutation alters the expression of several genes engaged in low temperature responses. The location of SWI3C-containing SWI/SNF CRCs on the ICE1, MYB15 and CBF1 target genes depends on the temperature conditions, and the swi3c mutation thus also influences the transcription of several cold-responsive (COR) genes. These findings, together with genetic analysis of swi3c/ice1 double mutant and enhanced freezing tolerance of swi3c plants illustrate that SWI/SNF CRCs contribute to fine-tuning of plant growth responses to different temperature regimes.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Regiones no Traducidas 5' , Adaptación Fisiológica/genética , Arabidopsis/genética , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Frío , Regulación de la Expresión Génica de las Plantas/genética , Mutación , Nucleosomas/genética , Fenotipo , Plantas Modificadas Genéticamente , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Plant J ; 100(2): 411-429, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31276249

RESUMEN

To accelerate the isolation of plant protein complexes and study cellular localization and interaction of their components, an improved recombineering protocol is described for simple and fast site-directed modification of plant genes in bacterial artificial chromosomes (BACs). Coding sequences of fluorescent and affinity tags were inserted into genes and transferred together with flanking genomic sequences of desired size by recombination into Agrobacterium plant transformation vectors using three steps of E. coli transformation with PCR-amplified DNA fragments. Application of fast-track recombineering is illustrated by the simultaneous labelling of CYCLIN-DEPENDENT KINASE D (CDKD) and CYCLIN H (CYCH) subunits of kinase module of TFIIH general transcription factor and the CDKD-activating CDKF;1 kinase with green fluorescent protein (GFP) and mCherry (green and red fluorescent protein) tags, and a PIPL (His18 -StrepII-HA) epitope. Functionality of modified CDKF;1 gene constructs is verified by complementation of corresponding T-DNA insertion mutation. Interaction of CYCH with all three known CDKD homologues is confirmed by their co-localization and co-immunoprecipitation. Affinity purification and mass spectrometry analyses of CDKD;2, CYCH, and DNA-replication-coupled HISTONE H3.1 validate their association with conserved TFIIH subunits and components of CHROMATIN ASSEMBLY FACTOR 1, respectively. The results document that simple modification of plant gene products with suitable tags by fast-track recombineering is well suited to promote a wide range of protein interaction and proteomics studies.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ingeniería Genética/métodos , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cromosomas Artificiales Bacterianos/genética , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Reporteros , Proteínas Fluorescentes Verdes , Histonas/genética , Histonas/metabolismo , Proteínas Luminiscentes , Mutagénesis Insercional , Plantas Modificadas Genéticamente , Recombinación Genética , Proteína Fluorescente Roja
4.
Front Plant Sci ; 10: 454, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31031789

RESUMEN

The history of life consists of a series of major evolutionary transitions, including emergence and radiation of complex multicellular eukaryotes from unicellular ancestors. The cells of multicellular organisms, with few exceptions, contain the same genome, however, their organs are composed of a variety of cell types that differ in both structure and function. This variation is largely due to the transcriptional activity of different sets of genes in different cell types. This indicates that complex transcriptional regulation played a key role in the evolution of complexity in eukaryotes. In this review, we summarize how gene duplication and subsequent evolutionary innovations, including the structural evolution of nucleosomes and chromatin-related factors, contributed to the complexity of the transcriptional system and provided a basis for morphological diversity.

5.
Plant Sci ; 270: 278-291, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29576081

RESUMEN

The evolutionary conserved family of Selenoproteins performs redox-regulatory functions in bacteria, archaea and eukaryotes. Among them, members of the SELENOPROTEIN O (SELO) subfamily are located in mammalian and yeast mitochondria, but their functions are thus far enigmatic. Screening of T-DNA knockout mutants for resistance to the proline analogue thioproline (T4C), identified mutant alleles of the plant SELO homologue in Arabidopsis thaliana. Absence of SELO resulted in a stress-induced transcriptional activation instead of silencing of mitochondrial proline dehydrogenase, and also high elevation of Δ(1)-pyrroline-5-carboxylate dehydrogenase involved in degradation of proline, thereby alleviating T4C inhibition and lessening drought-induced proline accumulation. Unlike its animal homologues, SELO was localized to chloroplasts of plants ectopically expressing SELO-GFP. The protein was co-fractionated with thylakoid membrane complexes, and co-immunoprecipitated with FNR, PGRL1 and STN7, all involved in regulating PSI and downstream electron flow. The selo mutants displayed extended survival under dehydration, accompanied by longer photosynthetic activity, compared with wild-type plants. Enhanced expression of genes encoding ROS scavenging enzymes in the unstressed selo mutant correlated with higher oxidant scavenging capacity and reduced methyl viologen damage. The study elucidates SELO as a PSI-related component involved in regulating ROS levels and stress responses.


Asunto(s)
Arabidopsis/genética , Prolina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Selenoproteínas/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Sequías , Depuradores de Radicales Libres/metabolismo , Fotosíntesis , Selenoproteínas/genética , Estrés Fisiológico
6.
Plant Physiol ; 173(3): 1750-1762, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28167701

RESUMEN

Plants modify organ growth and tune morphogenesis in response to various endogenous and environmental cues. At the cellular level, organ growth is often adjusted by alterations in cell growth, but the molecular mechanisms underlying this control remain poorly understood. In this study, we identify the DNA BINDING WITH ONE FINGER (DOF)-type transcription regulator OBF BINDING PROTEIN4 (OBP4) as a repressor of cell growth. Ectopic expression of OBP4 in Arabidopsis (Arabidopsis thaliana) inhibits cell growth, resulting in severe dwarfism and the repression of genes involved in the regulation of water transport, root hair development, and stress responses. Among the basic helix-loop-helix transcription factors known to control root hair growth, OBP4 binds the ROOT HAIR DEFECTIVE6-LIKE2 (RSL2) promoter to repress its expression. The accumulation of OBP4 proteins is detected in expanding root epidermal cells, and its expression level is increased by the application of abscisic acid (ABA) at concentrations sufficient to inhibit root hair growth. ABA-dependent induction of OBP4 is associated with the reduced expression of RSL2 Furthermore, ectopic expression of OBP4 or loss of RSL2 function results in ABA-insensitive root hair growth. Taken together, our results suggest that OBP4-mediated transcriptional repression of RSL2 contributes to the ABA-dependent inhibition of root hair growth in Arabidopsis.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Raíces de Plantas/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Microscopía Confocal , Mutación , Epidermis de la Planta/genética , Epidermis de la Planta/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
Plant Cell Environ ; 40(7): 997-1008, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28054361

RESUMEN

Plants generate rhythmic metabolism during the repetitive day/night cycle. The circadian clock produces internal biological rhythms to synchronize numerous metabolic processes such that they occur at the required time of day. Metabolism conversely influences clock function by controlling circadian period and phase and the expression of core-clock genes. Here, we show that AKIN10, a catalytic subunit of the evolutionarily conserved key energy sensor sucrose non-fermenting 1 (Snf1)-related kinase 1 (SnRK1) complex, plays an important role in the circadian clock. Elevated AKIN10 expression led to delayed peak expression of the circadian clock evening-element GIGANTEA (GI) under diurnal conditions. Moreover, it lengthened clock period specifically under light conditions. Genetic analysis showed that the clock regulator TIME FOR COFFEE (TIC) is required for this effect of AKIN10. Taken together, we propose that AKIN10 conditionally works in a circadian clock input pathway to the circadian oscillator.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Relojes Circadianos/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Luz , Mutación , Proteínas Nucleares/genética , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/genética
8.
EMBO J ; 35(19): 2068-2086, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27497297

RESUMEN

Upon DNA damage, cyclin-dependent kinases (CDKs) are typically inhibited to block cell division. In many organisms, however, it has been found that CDK activity is required for DNA repair, especially for homology-dependent repair (HR), resulting in the conundrum how mitotic arrest and repair can be reconciled. Here, we show that Arabidopsis thaliana solves this dilemma by a division of labor strategy. We identify the plant-specific B1-type CDKs (CDKB1s) and the class of B1-type cyclins (CYCB1s) as major regulators of HR in plants. We find that RADIATION SENSITIVE 51 (RAD51), a core mediator of HR, is a substrate of CDKB1-CYCB1 complexes. Conversely, mutants in CDKB1 and CYCB1 fail to recruit RAD51 to damaged DNA CYCB1;1 is specifically activated after DNA damage and we show that this activation is directly controlled by SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), a transcription factor that acts similarly to p53 in animals. Thus, while the major mitotic cell-cycle activity is blocked after DNA damage, CDKB1-CYCB1 complexes are specifically activated to mediate HR.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ciclina B/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Reparación del ADN por Recombinación , Proteínas de Arabidopsis/genética , Ciclina B/genética , Quinasas Ciclina-Dependientes/genética , Recombinasa Rad51/metabolismo , Factores de Transcripción/metabolismo
9.
Trends Plant Sci ; 21(7): 594-608, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26920655

RESUMEN

SWI/SNF-type ATP-dependent chromatin remodeling complexes (CRCs) are evolutionarily conserved multiprotein machineries controlling DNA accessibility by regulating chromatin structure. We summarize here recent advances highlighting the role of SWI/SNF in the regulation of hormone signaling pathways and their crosstalk in Arabidopsis thaliana. We discuss the functional interdependences of SWI/SNF complexes and key elements regulating developmental and hormone signaling pathways by indicating intriguing similarities and differences in plants and humans, and summarize proposed mechanisms of SWI/SNF action on target loci. We postulate that, given their viability, several plant SWI/SNF mutants may serve as an attractive model for searching for conserved functions of SWI/SNF CRCs in hormone signaling, cell cycle control, and other regulatory pathways.


Asunto(s)
Arabidopsis/metabolismo , Cromatina/metabolismo , Arabidopsis/genética , Cromatina/genética , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Plant Cell ; 27(7): 1889-906, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26106148

RESUMEN

Arabidopsis thaliana SWP73A and SWP73B are homologs of mammalian BRAHMA-associated factors (BAF60s) that tether SWITCH/SUCROSE NONFERMENTING chromatin remodeling complexes to transcription factors of genes regulating various cell differentiation pathways. Here, we show that Arabidopsis thaliana SWP73s modulate several important developmental pathways. While undergoing normal vegetative development, swp73a mutants display reduced expression of FLOWERING LOCUS C and early flowering in short days. By contrast, swp73b mutants are characterized by retarded growth, severe defects in leaf and flower development, delayed flowering, and male sterility. MNase-Seq, transcript profiling, and ChIP-Seq studies demonstrate that SWP73B binds the promoters of ASYMMETRIC LEAVES1 and 2, KANADI1 and 3, and YABBY2, 3, and 5 genes, which regulate leaf development and show coordinately altered transcription in swp73b plants. Lack of SWP73B alters the expression patterns of APETALA1, APETALA3, and the MADS box gene AGL24, whereas other floral organ identity genes show reduced expression correlating with defects in flower development. Consistently, SWP73B binds to the promoter regions of APETALA1 and 3, SEPALLATA3, LEAFY, UNUSUAL FLORAL ORGANS, TERMINAL FLOWER1, AGAMOUS-LIKE24, and SUPPRESSOR OF CONSTANS OVEREXPRESSION1 genes, and the swp73b mutation alters nucleosome occupancy on most of these loci. In conclusion, SWP73B acts as important modulator of major developmental pathways, while SWP73A functions in flowering time control.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Flores/crecimiento & desarrollo , Flores/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Subunidades de Proteína/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/embriología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Inmunoprecipitación de Cromatina , Flores/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Nucleasa Microcócica/metabolismo , Mutagénesis Insercional/genética , Mutación/genética , Nucleosomas/metabolismo , Hojas de la Planta/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Subunidades de Proteína/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Técnicas del Sistema de Dos Híbridos
11.
Plant J ; 82(5): 772-84, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25847219

RESUMEN

The ethylene response factor VII (ERF-VII) transcription factor RELATED TO APETALA2.12 (RAP2.12) was previously identified as an activator of the ALCOHOL DEHYDROGENASE1 promoter::luciferase (ADH1-LUC) reporter gene. Here we show that overexpression of RAP2.12 and its homologues RAP2.2 and RAP2.3 sustains ABA-mediated activation of ADH1 and activates hypoxia marker genes under both anoxic and normoxic conditions. Inducible expression of all three RAP2s conferred tolerance to anoxia, oxidative and osmotic stresses, and enhanced the sensitivity to abscisic acid (ABA). Consistently, the rap2.12-2 rap2.3-1 double mutant showed hypersensitivity to both submergence and osmotic stress. These findings suggest that the three ERF-VII-type transcription factors play roles in tolerance to multiple stresses that sequentially occur during and after submergence in Arabidopsis. Oxygen-dependent degradation of RAP2.12 was previously shown to be mediated by the N-end rule pathway. During submergence the RAP2.12, RAP2.2 and RAP2.3 are stabilized and accumulates in the nucleus affecting the transcription of stress response genes. We conclude that the stabilized RAP2 transcription factors can prolong the ABA-mediated activation of a subset of osmotic responsive genes (e.g. ADH1). We also show that RAP2.12 protein level is affected by the REALLY INTERESTING GENE (RING) domain containing SEVEN IN ABSENTIA of Arabidopsis thaliana 2 (SINAT2). Silencing of SINAT1/2 genes leads to enhanced RAP2.12 abundance independently of the presence or absence of its N-terminal degron. Taken together, our results suggest that RAP2.12 and its homologues RAP2.2 and RAP2.3 act redundantly in multiple stress responses. Alternative protein degradation pathways may provide inputs to the RAP2 transcription factors for the distinct stresses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Estrés Oxidativo , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Aclimatación , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Presión Osmótica , Oxígeno/metabolismo , Plantas Modificadas Genéticamente , Estructura Terciaria de Proteína , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/metabolismo
13.
Plant J ; 81(3): 399-412, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25438658

RESUMEN

The stem cell niche in the root meristem maintains pluripotent stem cells to ensure a constant supply of cells for root growth. Despite extensive progress, the molecular mechanisms through which root stem cell fates and stem cell niche activity are determined remain largely unknown. In Arabidopsis thaliana, the Pleiotropic Regulatory Locus 1 (PRL1) encodes a WD40-repeat protein subunit of the spliceosome-activating Nineteen Complex (NTC) that plays a role in multiple stress, hormone and developmental signaling pathways. Here, we show that PRL1 is involved in the control of root meristem size and root stem cell niche activity. PRL1 is strongly expressed in the root meristem and its loss of function mutation results in disorganization of the quiescent center (QC), premature stem cell differentiation, aberrant cell division, and reduced root meristem size. Our genetic studies indicate that PRL1 is required for confined expression of the homeodomain transcription factor WOX5 in the QC and acts upstream of the transcription factor PLETHORA (PLT) in modulating stem cell niche activity and root meristem size. These findings define a role for PRL1 as an important determinant of PLT signaling that modulates maintenance of the stem cell niche and root meristem size.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Proteínas Portadoras/fisiología , Proteínas de Homeodominio/fisiología , Meristema/genética , Proteínas Nucleares/fisiología , Arabidopsis/citología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/genética , Puntos de Control del Ciclo Celular , Diferenciación Celular/genética , División Celular/genética , Proteínas de Homeodominio/metabolismo , Meristema/citología , Meristema/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Estructura Terciaria de Proteína , Transducción de Señal , Nicho de Células Madre/genética
14.
Plant Physiol ; 165(3): 1203-1220, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24808098

RESUMEN

Seed germination is controlled by environmental signals, including light and endogenous phytohormones. Abscisic acid (ABA) inhibits, whereas gibberellin promotes, germination and early seedling development, respectively. Here, we report that ZFP3, a nuclear C2H2 zinc finger protein, acts as a negative regulator of ABA suppression of seed germination in Arabidopsis (Arabidopsis thaliana). Accordingly, regulated overexpression of ZFP3 and the closely related ZFP1, ZFP4, ZFP6, and ZFP7 zinc finger factors confers ABA insensitivity to seed germination, while the zfp3 zfp4 double mutant displays enhanced ABA susceptibility. Reduced expression of several ABA-induced genes, such as RESPONSIVE TO ABSCISIC ACID18 and transcription factor ABSCISIC ACID-INSENSITIVE4 (ABI4), in ZFP3 overexpression seedlings suggests that ZFP3 negatively regulates ABA signaling. Analysis of ZFP3 overexpression plants revealed multiple phenotypic alterations, such as semidwarf growth habit, defects in fertility, and enhanced sensitivity of hypocotyl elongation to red but not to far-red or blue light. Analysis of genetic interactions with phytochrome and abi mutants indicates that ZFP3 enhances red light signaling by photoreceptors other than phytochrome A and additively increases ABA insensitivity conferred by the abi2, abi4, and abi5 mutations. These data support the conclusion that ZFP3 and the related ZFP subfamily of zinc finger factors regulate light and ABA responses during germination and early seedling development.

15.
Plant Physiol ; 165(1): 319-34, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24676858

RESUMEN

Heat shock factors (HSFs) are principal regulators of plant responses to several abiotic stresses. Here, we show that estradiol-dependent induction of HSFA4A confers enhanced tolerance to salt and oxidative agents, whereas inactivation of HSFA4A results in hypersensitivity to salt stress in Arabidopsis (Arabidopsis thaliana). Estradiol induction of HSFA4A in transgenic plants decreases, while the knockout hsfa4a mutation elevates hydrogen peroxide accumulation and lipid peroxidation. Overexpression of HSFA4A alters the transcription of a large set of genes regulated by oxidative stress. In yeast (Saccharomyces cerevisiae) two-hybrid and bimolecular fluorescence complementation assays, HSFA4A shows homomeric interaction, which is reduced by alanine replacement of three conserved cysteine residues. HSFA4A interacts with mitogen-activated protein kinases MPK3 and MPK6 in yeast and plant cells. MPK3 and MPK6 phosphorylate HSFA4A in vitro on three distinct sites, serine-309 being the major phosphorylation site. Activation of the MPK3 and MPK6 mitogen-activated protein kinase pathway led to the transcriptional activation of the HEAT SHOCK PROTEIN17.6A gene. In agreement that mutation of serine-309 to alanine strongly diminished phosphorylation of HSFA4A, it also strongly reduced the transcriptional activation of HEAT SHOCK PROTEIN17.6A. These data suggest that HSFA4A is a substrate of the MPK3/MPK6 signaling and that it regulates stress responses in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estrés Oxidativo , Tolerancia a la Sal , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Células Cultivadas , ADN Bacteriano/genética , Estradiol/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Datos de Secuencia Molecular , Mutagénesis Insercional/genética , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Fosforilación/efectos de los fármacos , Plantas Modificadas Genéticamente , Unión Proteica/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Salinidad , Tolerancia a la Sal/efectos de los fármacos , Tolerancia a la Sal/genética , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Factores de Transcripción/química , Factores de Transcripción/genética , Transcripción Genética/efectos de los fármacos , Transformación Genética/efectos de los fármacos
16.
Plant J ; 77(6): 944-53, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24456507

RESUMEN

Transcription factors (TFs) are key regulators of gene expression in all organisms. In eukaryotes, TFs are often represented by functionally redundant members of large gene families. Overexpression might prove a means to unveil the biological functions of redundant TFs; however, constitutive overexpression of TFs frequently causes severe developmental defects, preventing their functional characterization. Conditional overexpression strategies help to overcome this problem. Here, we report on the TRANSPLANTA collection of Arabidopsis lines, each expressing one of 949 TFs under the control of a ß-estradiol-inducible promoter. Thus far, 1636 independent homozygous lines, representing an average of 2.6 lines for every TF, have been produced for the inducible expression of 634 TFs. Along with a GUS-GFP reporter, randomly selected TRANSPLANTA lines were tested and confirmed for conditional transgene expression upon ß-estradiol treatment. As a proof of concept for the exploitation of this resource, ß-estradiol-induced proliferation of root hairs, dark-induced senescence, anthocyanin accumulation and dwarfism were observed in lines conditionally expressing full-length cDNAs encoding RHD6, WRKY22, MYB123/TT2 and MYB26, respectively, in agreement with previously reported phenotypes conferred by these TFs. Further screening performed with other TRANSPLANTA lines allowed the identification of TFs involved in different plant biological processes, illustrating that the collection is a powerful resource for the functional characterization of TFs. For instance, ANAC058 and a TINY/AP2 TF were identified as modulators of ABA-mediated germination potential, and RAP2.10/DEAR4 was identified as a regulator of cell death in the hypocotyl-root transition zone. Seeds of TRANSPLANTA lines have been deposited at the Nottingham Arabidopsis Stock Centre for further distribution.


Asunto(s)
Arabidopsis/genética , Plantas Modificadas Genéticamente , Factores de Transcripción/metabolismo , Activación Transcripcional/efectos de los fármacos , Ácido Abscísico/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ADN Complementario/genética , Estradiol/metabolismo , Expresión Génica , Genes Reporteros , Vectores Genéticos , Germinación , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Plantones/genética , Plantones/metabolismo , Semillas/genética , Semillas/metabolismo , Factores de Transcripción/genética , Transgenes
17.
Curr Biol ; 23(21): 2090-9, 2013 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-24206843

RESUMEN

BACKGROUND: At meiosis, two successive rounds of chromosome segregation lead to ploidy halving. This is achieved through a stepwise release of sister chromatid cohesion, along chromosome arms to allow homolog segregation at anaphase I and at centromeres to allow sister chromatid segregation at anaphase II. Cohesins, the protein complex that ensures cohesion, must then be protected at centromeres throughout meiosis, until the onset of anaphase II. Members of the Shugoshin protein family have been shown to protect centromeric cohesins at anaphase I, but much less is known about the protection of cohesion during interkinesis, the stage between meiosis I and meiosis II. RESULTS: Here, we (1) show that both Arabidopsis SHUGOSHINs paralogs are required for complete protection of centromeric cohesins during meiosis I, without apparent somatic function, and (2) identified PATRONUS (PANS1), a novel protein required for protection of meiotic centromeric cohesion. Although AtSGO1 and AtSGO2 protect centromeric cohesion during anaphase I, PANS1 is required at a later stage, during interkinesis. Additionally, we identified PANS2, a paralog of PANS1, whose mutation is synthetically lethal with pans1 suggesting that PANS genes are also essential for mitosis. PANS1 interacts directly with the CDC27b and the CDC20.1 subunit of the Anaphase Promoting Complex (APC/C), in a manner suggesting that PANS1 could be both a regulator and a target of the APC/C. CONCLUSIONS: This study reveals that centromeric cohesion is actively protected at two successive stages of meiosis, by SHUGOSHINs at anaphase I and by PATRONUS at interkinesis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Meiosis , Secuencia de Aminoácidos , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/clasificación , Proteínas de Ciclo Celular/genética , Segregación Cromosómica , Mutación , Reacción en Cadena de la Polimerasa , Alineación de Secuencia
18.
Trends Plant Sci ; 18(11): 633-43, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23910452

RESUMEN

Post-translational modifications of the carboxy-terminal domain of the largest subunit of RNA polymerase II (RNAPII CTD) provide recognition marks to coordinate recruitment of numerous nuclear factors controlling transcription, cotranscriptional RNA processing, chromatin remodeling, and RNA export. Compared with the progress in yeast and mammals, deciphering the regulatory roles of position-specific combinatorial CTD modifications, the so-called CTD code, is still at an early stage in plants. In this review, we discuss some of the recent advances in understanding of the molecular mechanisms controlling the deposition and recognition of RNAPII CTD marks in plants during the transcriptional cycle and highlight some intriguing differences between regulatory components characterized in yeast, mammals, and plants.


Asunto(s)
Arabidopsis/enzimología , Procesamiento Proteico-Postraduccional , ARN Polimerasa II/metabolismo , Transcripción Genética , Animales , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Humanos , Mamíferos , Modelos Biológicos , Fosfoproteínas Fosfatasas/genética , Fosforilación , Proteínas Quinasas/genética , Estructura Terciaria de Proteína , ARN Polimerasa II/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Especificidad de la Especie
19.
Plant Physiol ; 163(1): 305-17, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23893173

RESUMEN

Switch (SWI)/Sucrose Nonfermenting (SNF)-type chromatin-remodeling complexes (CRCs) are involved in regulation of transcription, DNA replication and repair, and cell cycle. Mutations of conserved subunits of plant CRCs severely impair growth and development; however, the underlying causes of these phenotypes are largely unknown. Here, we show that inactivation of SWI3C, the core component of Arabidopsis (Arabidopsis thaliana) SWI/SNF CRCs, interferes with normal functioning of several plant hormone pathways and alters transcriptional regulation of key genes of gibberellin (GA) biosynthesis. The resulting reduction of GA4 causes severe inhibition of hypocotyl and root elongation, which can be rescued by exogenous GA treatment. In addition, the swi3c mutation inhibits DELLA-dependent transcriptional activation of GIBBERELLIN-INSENSITIVE DWARF1 (GID1) GA receptor genes. Down-regulation of GID1a in parallel with the DELLA repressor gene REPRESSOR OF GA1-3 1 in swi3c indicates that lack of SWI3C also leads to defects in GA signaling. Together with the recent demonstration of function of SWI/SNF ATPase BRAHMA in the GA pathway, these results reveal a critical role of SWI/SNF CRC in the regulation of GA biosynthesis and signaling. Moreover, we demonstrate that SWI3C is capable of in vitro binding to, and shows in vivo bimolecular fluorescence complementation interaction in cell nuclei with, the DELLA proteins RGA-LIKE2 and RGA-LIKE3, which affect transcriptional activation of GID1 and GA3ox (GIBBERELLIN 3-OXIDASE) genes controlling GA perception and biosynthesis, respectively. Furthermore, we show that SWI3C also interacts with the O-GlcNAc (O-linked N-acetylglucosamine) transferase SPINDLY required for proper functioning of DELLAs and acts hypostatically to (SPINDLY) in the GA response pathway. These findings suggest that DELLA-mediated effects in GA signaling as well as their role as a hub in hormonal cross talk may be, at least in part, dependent on their direct physical interaction with complexes responsible for modulation of chromatin structure.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/efectos de los fármacos , Proteínas Cromosómicas no Histona/fisiología , Giberelinas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Transducción de Señal/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica de las Plantas
20.
Plant Cell ; 25(5): 1592-608, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23673979

RESUMEN

CRK5 is a member of the Arabidopsis thaliana Ca(2+)/calmodulin-dependent kinase-related kinase family. Here, we show that inactivation of CRK5 inhibits primary root elongation and delays gravitropic bending of shoots and roots. Reduced activity of the auxin-induced DR5-green fluorescent protein reporter suggests that auxin is depleted from crk5 root tips. However, no tip collapse is observed and the transcription of genes for auxin biosynthesis, AUXIN TRANSPORTER/AUXIN TRANSPORTER-LIKE PROTEIN (AUX/LAX) auxin influx, and PIN-FORMED (PIN) efflux carriers is unaffected by the crk5 mutation. Whereas AUX1, PIN1, PIN3, PIN4, and PIN7 display normal localization, PIN2 is depleted from apical membranes of epidermal cells and shows basal to apical relocalization in the cortex of the crk5 root transition zone. This, together with an increase in the number of crk5 lateral root primordia, suggests facilitated auxin efflux through the cortex toward the elongation zone. CRK5 is a plasma membrane-associated kinase that forms U-shaped patterns facing outer lateral walls of epidermis and cortex cells. Brefeldin inhibition of exocytosis stimulates CRK5 internalization into brefeldin bodies. CRK5 phosphorylates the hydrophilic loop of PIN2 in vitro, and PIN2 shows accelerated accumulation in brefeldin bodies in the crk5 mutant. Delayed gravitropic response of the crk5 mutant thus likely reflects defective phosphorylation of PIN2 and deceleration of its brefeldin-sensitive membrane recycling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Exocitosis , Gravitropismo , Raíces de Plantas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/enzimología , Electroforesis en Gel de Poliacrilamida , Activación Enzimática , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ácidos Indolacéticos/metabolismo , Microscopía Confocal , Datos de Secuencia Molecular , Mutación , Fosforilación , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/genética , Receptores de Superficie Celular/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...