Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Infect Dis ; 229(Supplement_2): S265-S274, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37995376

RESUMEN

Variola virus (VARV), the etiological agent of smallpox, had enormous impacts on global health prior to its eradication. In the absence of global vaccination programs, mpox virus (MPXV) has become a growing public health threat that includes endemic and nonendemic regions across the globe. While human mpox resembles smallpox in clinical presentation, there are considerable knowledge gaps regarding conserved molecular pathogenesis between these 2 orthopoxviruses. Thus, we sought to compare MPXV and VARV infections in human monocytes through kinome analysis. We performed a longitudinal analysis of host cellular responses to VARV infection in human monocytes as well as a comparative analysis to clade I MPXV-mediated responses. While both viruses elicited strong activation of cell responses early during infection as compared to later time points, several key differences in cell signaling events were identified and validated. These observations will help in the design and development of panorthopoxvirus therapeutics.


Asunto(s)
Orthopoxvirus , Viruela , Virus de la Viruela , Humanos , Monkeypox virus , Monocitos
2.
Antimicrob Agents Chemother ; 66(11): e0084122, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36222522

RESUMEN

The genus Orthopoxvirus contains several human pathogens, including vaccinia, monkeypox, cowpox, and variola virus, the causative agent of smallpox. Although there are a few effective vaccines, widespread prophylactic vaccination has ceased and is unlikely to resume, making therapeutics increasingly important to treat poxvirus disease. Here, we described efforts to improve the potency of the anti-poxvirus small molecule CMLDBU6128. This class of small molecules, referred to as pyridopyrimidinones (PDPMs), showed a wide range of biological activities. Through the synthesis and testing of several exploratory chemical libraries based on this molecule, we identified several compounds that had increased potency from the micromolar into the nanomolar range. Two compounds, designated (12) and (16), showed inhibitory concentrations of 326 nM and 101 nM, respectively, which was more than a 10-fold increase in potency to CMLDBU6128 with an inhibitory concentration of around 6 µM. We also expanded our investigation of the breadth of action of these molecules and showed that they can inhibit the replication of variola virus, a related orthopoxvirus. Together, these findings highlighted the promise of this new class of antipoxviral agents as broad-spectrum small molecules with significant potential to be developed as antiviral therapy. This would add a small molecule option for therapy of spreading diseases, including monkeypox and cowpox viruses, that would also be expected to have efficacy against smallpox.


Asunto(s)
Mpox , Orthopoxvirus , Viruela , Vaccinia , Virus de la Viruela , Humanos , Viruela/tratamiento farmacológico , Vaccinia/tratamiento farmacológico , Virus Vaccinia
3.
MMWR Morb Mortal Wkly Rep ; 71(14): 509-516, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35389974

RESUMEN

Monkeypox is a rare, sometimes life-threatening zoonotic infection that occurs in west and central Africa. It is caused by Monkeypox virus, an orthopoxvirus similar to Variola virus (the causative agent of smallpox) and Vaccinia virus (the live virus component of orthopoxvirus vaccines) and can spread to humans. After 39 years without detection of human disease in Nigeria, an outbreak involving 118 confirmed cases was identified during 2017-2018 (1); sporadic cases continue to occur. During September 2018-May 2021, six unrelated persons traveling from Nigeria received diagnoses of monkeypox in non-African countries: four in the United Kingdom and one each in Israel and Singapore. In July 2021, a man who traveled from Lagos, Nigeria, to Dallas, Texas, became the seventh traveler to a non-African country with diagnosed monkeypox. Among 194 monitored contacts, 144 (74%) were flight contacts. The patient received tecovirimat, an antiviral for treatment of orthopoxvirus infections, and his home required large-scale decontamination. Whole genome sequencing showed that the virus was consistent with a strain of Monkeypox virus known to circulate in Nigeria, but the specific source of the patient's infection was not identified. No epidemiologically linked cases were reported in Nigeria; no contact received postexposure prophylaxis (PEP) with the orthopoxvirus vaccine ACAM2000.


Asunto(s)
Mpox , Humanos , Masculino , Mpox/diagnóstico , Mpox/epidemiología , Mpox/prevención & control , Monkeypox virus/genética , Nigeria/epidemiología , Texas/epidemiología
4.
PLoS Pathog ; 17(9): e1009633, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34547055

RESUMEN

Smallpox, caused by the solely human pathogen Variola virus (VARV), was declared eradicated in 1980. While known VARV stocks are secure, smallpox remains a bioterrorist threat agent. Recent U.S. Food and Drug Administration approval of the first smallpox anti-viral (tecovirimat) therapeutic was a successful step forward in smallpox preparedness; however, orthopoxviruses can become resistant to treatment, suggesting a multi-therapeutic approach is necessary. Animal models are required for testing medical countermeasures (MCMs) and ideally MCMs are tested directly against the pathogen of interest. Since VARV only infects humans, a representative animal model for testing therapeutics directly against VARV remains a challenge. Here we show that three different humanized mice strains are highly susceptible to VARV infection, establishing the first small animal model using VARV. In comparison, the non-humanized, immunosuppressed background mouse was not susceptible to systemic VARV infection. Following an intranasal VARV challenge that mimics the natural route for human smallpox transmission, the virus spread systemically within the humanized mouse before mortality (~ 13 days post infection), similar to the time from exposure to symptom onset for ordinary human smallpox. Our identification of a permissive/representative VARV animal model can facilitate testing of MCMs in a manner consistent with their intended use.


Asunto(s)
Modelos Animales de Enfermedad , Viruela , Animales , Humanos , Ratones , Virus de la Viruela
5.
mSphere ; 6(1)2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536322

RESUMEN

Smallpox, caused by Variola virus (VARV), was eradicated in 1980; however, VARV bioterrorist threats still exist, necessitating readily available therapeutics. Current preparedness activities recognize the importance of oral antivirals and recommend therapeutics with different mechanisms of action. Monkeypox virus (MPXV) is closely related to VARV, causing a highly similar clinical human disease, and can be used as a surrogate for smallpox antiviral testing. The prairie dog MPXV model has been characterized and used to study the efficacy of antipoxvirus therapeutics, including recently approved TPOXX (tecovirimat). Brincidofovir (BCV; CMX001) has shown antiviral activity against double-stranded DNA viruses, including poxviruses. To determine the exposure of BCV following oral administration to prairie dogs, a pharmacokinetics (PK) study was performed. Analysis of BCV plasma concentrations indicated variability, conceivably due to the outbred nature of the animals. To determine BCV efficacy in the MPXV prairie dog model, groups of animals were intranasally challenged with 9 × 105 plaque-forming units (PFU; 90% lethal dose [LD90]) of MPXV on inoculation day 0 (ID0). Animals were divided into groups based on the first day of BCV treatment relative to inoculation day (ID-1, ID0, or ID1). A trend in efficacy was noted dependent upon treatment initiation (57% on ID-1, 43% on ID0, and 29% on ID1) but was lower than demonstrated in other animal models. Analysis of the PK data indicated that BCV plasma exposure (maximum concentration [Cmax]) and the time of the last quantifiable concentration (AUClast) were lower than in other animal models administered the same doses, indicating that suboptimal BCV exposure may explain the lower protective effect on survival.IMPORTANCE Preparedness activities against highly transmissible viruses with high mortality rates have been highlighted during the ongoing coronavirus disease 2019 (COVID-19) pandemic. Smallpox, caused by variola virus (VARV) infection, is highly transmissible, with an estimated 30% mortality. Through an intensive vaccination campaign, smallpox was declared eradicated in 1980, and routine smallpox vaccination of individuals ceased. Today's current population has little/no immunity against VARV. If smallpox were to reemerge, the worldwide results would be devastating. Recent FDA approval of one smallpox antiviral (tecovirimat) was a successful step in biothreat preparedness; however, orthopoxviruses can become resistant to treatment, suggesting the need for multiple therapeutics. Our paper details the efficacy of the investigational smallpox drug brincidofovir in a monkeypox virus (MPXV) animal model. Since brincidofovir has not been tested in vivo against smallpox, studies with the related virus MPXV are critical in understanding whether it would be protective in the event of a smallpox outbreak.


Asunto(s)
Citosina/análogos & derivados , Monkeypox virus/efectos de los fármacos , Organofosfonatos/farmacología , Organofosfonatos/farmacocinética , Viruela/tratamiento farmacológico , Animales , Antivirales/farmacocinética , Antivirales/farmacología , Benzamidas/farmacocinética , Benzamidas/farmacología , Citosina/farmacocinética , Citosina/farmacología , Modelos Animales de Enfermedad , Perros , Femenino , Isoindoles/farmacocinética , Isoindoles/farmacología , Masculino , Virus de la Viruela/efectos de los fármacos
7.
Virus Res ; 275: 197772, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31593747

RESUMEN

Numerous animal models of systemic orthopoxvirus disease have been developed to evaluate therapeutics against variola virus (VARV), the causative agent of smallpox. These animal models do not resemble the disease presentation in human smallpox and most used surrogate Orthopoxviruses. A rodent model using VARV has a multitude of advantages, and previous investigations identified the CAST/EiJ mouse as highly susceptible to monkeypox virus infection, making it of interest to determine if these rodents are also susceptible to VARV infection. In this study, we inoculated CAST/EiJ mice with a range of VARV doses (102-106 plaque forming units). Some animals had detectable viable VARV from the oropharynx between days 3 and 12 post inoculation. Despite evidence of disease, the CAST/EiJ mouse does not provide a model for clinical smallpox due to mild signs of morbidity and limited skin lesions. However, in contrast to previous rodent models using VARV challenge (i.e. prairie dogs and SCID mice), a robust immune response was observed in the CAST/EiJ mice (measured by Immunoglobulin G enzyme-linked immunosorbent assay). This is an advantage of this model for the study of VARV and presents a unique potential for the study of the immunomodulatory pathways following VARV infection.


Asunto(s)
Modelos Animales de Enfermedad , Ratones , Viruela/inmunología , Virus de la Viruela/inmunología , Virus de la Viruela/patogenicidad , Animales , Femenino , Humanos , Ratones SCID , Viruela/fisiopatología , Viruela/virología
8.
PLoS One ; 14(9): e0222612, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31557167

RESUMEN

Monkeypox virus (MPXV) is a member of the genus Orthopoxvirus, endemic in Central and West Africa. This viral zoonosis was introduced into the United States in 2003 via African rodents imported for the pet trade and caused 37 human cases, all linked to exposure to MPXV-infected black-tailed prairie dogs (Cynomys ludovicianus). Prairie dogs have since become a useful model of MPXV disease, utilized for testing of potential medical countermeasures. In this study, we used recombinant MPXV containing the firefly luciferase gene (luc) and in vivo imaging technology to characterize MPXV pathogenesis in the black-tailed prairie dog in real time. West African (WA) MPXV could be visualized using in vivo imaging in the nose, lymph nodes, intestines, heart, lung, kidneys, and liver as early as day 6 post infection (p.i.). By day 9 p.i., lesions became visible on the skin and in some cases in the spleen. After day 9 p.i., luminescent signal representing MPXV replication either increased, indicating a progression to what would be a fatal infection, or decreased as infection was resolved. Use of recombinant luc+ MPXV allowed for a greater understanding of how MPXV disseminates throughout the body in prairie dogs during the course of infection. This technology will be used to reduce the number of animals required in future pathogenesis studies as well as aid in determining the effectiveness of potential medical countermeasures.


Asunto(s)
Monkeypox virus , Mpox/veterinaria , Sciuridae/virología , Animales , Modelos Animales de Enfermedad , Femenino , Corazón/virología , Intestinos/virología , Riñón/virología , Hígado/virología , Mediciones Luminiscentes/veterinaria , Pulmón/virología , Ganglios Linfáticos/virología , Masculino , Mpox/patología , Mpox/virología , Nariz/virología
9.
Viruses ; 9(10)2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28972544

RESUMEN

During 2012, 2013 and 2015, we collected small mammals within 25 km of the town of Boende in Tshuapa Province, the Democratic Republic of the Congo. The prevalence of monkeypox virus (MPXV) in this area is unknown; however, cases of human infection were previously confirmed near these collection sites. Samples were collected from 353 mammals (rodents, shrews, pangolins, elephant shrews, a potamogale, and a hyrax). Some rodents and shrews were captured from houses where human monkeypox cases have recently been identified, but most were trapped in forests and agricultural areas near villages. Real-time PCR and ELISA were used to assess evidence of MPXV infection and other Orthopoxvirus (OPXV) infections in these small mammals. Seven (2.0%) of these animal samples were found to be anti-orthopoxvirus immunoglobulin G (IgG) antibody positive (six rodents: two Funisciurus spp.; one Graphiurus lorraineus; one Cricetomys emini; one Heliosciurus sp.; one Oenomys hypoxanthus, and one elephant shrew Petrodromus tetradactylus); no individuals were found positive in PCR-based assays. These results suggest that a variety of animals can be infected with OPXVs, and that epidemiology studies and educational campaigns should focus on animals that people are regularly contacting, including larger rodents used as protein sources.


Asunto(s)
Animales Salvajes/virología , Monkeypox virus/aislamiento & purificación , Mpox/veterinaria , Animales , Anticuerpos Antivirales/sangre , República Democrática del Congo/epidemiología , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoglobulina G/sangre , Mamíferos/virología , Mpox/epidemiología , Mpox/transmisión , Mpox/virología , Monkeypox virus/genética , Monkeypox virus/inmunología , Monkeypox virus/patogenicidad , Infecciones por Poxviridae/epidemiología , Infecciones por Poxviridae/inmunología , Infecciones por Poxviridae/veterinaria , Infecciones por Poxviridae/virología , Prevalencia , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Riesgo , Sciuridae/virología , Musarañas/virología
10.
Cell ; 167(3): 684-694.e9, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27768891

RESUMEN

Monkeypox (MPXV) and cowpox (CPXV) are emerging agents that cause severe human infections on an intermittent basis, and variola virus (VARV) has potential for use as an agent of bioterror. Vaccinia immune globulin (VIG) has been used therapeutically to treat severe orthopoxvirus infections but is in short supply. We generated a large panel of orthopoxvirus-specific human monoclonal antibodies (Abs) from immune subjects to investigate the molecular basis of broadly neutralizing antibody responses for diverse orthopoxviruses. Detailed analysis revealed the principal neutralizing antibody specificities that are cross-reactive for VACV, CPXV, MPXV, and VARV and that are determinants of protection in murine challenge models. Optimal protection following respiratory or systemic infection required a mixture of Abs that targeted several membrane proteins, including proteins on enveloped and mature virion forms of virus. This work reveals orthopoxvirus targets for human Abs that mediate cross-protective immunity and identifies new candidate Ab therapeutic mixtures to replace VIG.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Especificidad de Anticuerpos , Infecciones por Poxviridae/inmunología , Viruela Vacuna/inmunología , Virus de la Viruela Vacuna/inmunología , Reacciones Cruzadas , Humanos , Leucocitos Mononucleares/inmunología , Mpox/inmunología , Monkeypox virus/inmunología , Viruela/inmunología , Vaccinia/inmunología , Virus Vaccinia/inmunología , Virus de la Viruela/inmunología
12.
J Clin Microbiol ; 53(4): 1406-10, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25673790

RESUMEN

A public health response relies upon rapid and reliable confirmation of disease by diagnostic assays. Here, we detail the design and validation of two variola virus-specific real-time PCR assays, since previous assays cross-reacted with newly identified cowpox viruses. The assay specificity must continually be reassessed as other closely related viruses are identified.


Asunto(s)
Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Virus de la Viruela/aislamiento & purificación , Secuencia de Bases , ADN Viral/genética , Datos de Secuencia Molecular , Sensibilidad y Especificidad , Especificidad de la Especie
13.
BMC Microbiol ; 14: 41, 2014 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-24533573

RESUMEN

BACKGROUND: Coxiella burnetii causes Q fever in humans and Coxiellosis in animals; symptoms range from general malaise to fever, pneumonia, endocarditis and death. Livestock are a significant source of human infection as they shed C. burnetii cells in birth tissues, milk, urine and feces. Although prevalence of C. burnetii is high, few Q fever cases are reported in the U.S. and we have a limited understanding of their connectedness due to difficulties in genotyping. Here, we develop canonical SNP genotyping assays to evaluate spatial and temporal relationships among C. burnetii environmental samples and compare them across studies. Given the genotypic diversity of historical collections, we hypothesized that the current enzootic of Coxiellosis is caused by multiple circulating genotypes. We collected A) 23 milk samples from a single bovine herd, B) 134 commercial bovine and caprine milk samples from across the U.S., and C) 400 bovine and caprine samples from six milk processing plants over three years. RESULTS: We detected C. burnetii DNA in 96% of samples with no variance over time. We genotyped 88.5% of positive samples; bovine milk contained only a single genotype (ST20) and caprine milk was dominated by a second type (mostly ST8). CONCLUSIONS: The high prevalence and lack of genotypic diversity is consistent with a model of rapid spread and persistence. The segregation of genotypes between host species is indicative of species-specific adaptations or dissemination barriers and may offer insights into the relative lack of human cases and characterizing genotypes.


Asunto(s)
Coxiella burnetii/clasificación , Coxiella burnetii/genética , Variación Genética , Leche/microbiología , Tipificación Molecular/métodos , Fiebre Q/veterinaria , Animales , Bovinos , Coxiella burnetii/aislamiento & purificación , Genotipo , Cabras , Epidemiología Molecular , Prevalencia , Fiebre Q/microbiología , Estados Unidos/epidemiología
14.
J Wildl Dis ; 49(2): 441-6, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23568925

RESUMEN

Coxiella burnetii, a zoonotic bacterium, has recently been identified in several marine mammal species on the Pacific Coast of North America, but little is known about the epidemiology, transmission, and pathogenesis in these species. We tested sera archived from northern fur seals (NFS, Callorhinus ursinus; n=236) and Steller sea lions (SSL, Eumetopias jubatus; n=72) sampled in Alaska for C. burnetii antibodies, and vaginal swabs from NFS (n=40) for C. burnetii by qPCR. The antibody prevalence in NFS samples from 2009 and 2011 (69%) was significantly higher than in 1994 (49%). The antibody prevalence of SSL samples from 2007 to 2011 was 59%. All NFS vaginal swabs were negative for C. burnetii, despite an 80% antibody prevalence in the matched sera. The significant increase in antibody prevalence in NFS from 1994 to 2011 suggests that the pathogen may be increasingly common or that there is marked temporal variation within the vulnerable NFS population. The high antibody prevalence in SSL suggests that this pathogen may also be significant in the endangered SSL population. These results confirm that C. burnetii is more prevalent within these populations than previously known. More research is needed to determine how this bacterium may affect individual, population, and reproductive health of marine mammals.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Lobos Marinos/microbiología , Fiebre Q/veterinaria , Leones Marinos/microbiología , Alaska/epidemiología , Animales , Coxiella burnetii/inmunología , Femenino , Masculino , Fiebre Q/epidemiología , Estudios Seroepidemiológicos , Vagina/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...